Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1)
Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (...
Gespeichert in:
Veröffentlicht in: | Materials 2021-07, Vol.14 (15), p.4207 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 4207 |
container_title | Materials |
container_volume | 14 |
creator | Martínez, Ana María Giudici, Paula Trigubó, Alicia Beatriz D’Elía, Raúl Heredia, Eduardo Ramelli, Rodrigo González, Rubén Aza, Felipe Gilabert, Ulises |
description | Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and varied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques. |
doi_str_mv | 10.3390/ma14154207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558845787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-466215bdd69ed98217f04e8fd1d9f3a597e5ce31a1234dace26bb3c14c9893763</originalsourceid><addsrcrecordid>eNpdksFu1DAQhiMEolXphSewxKWgbuuJncS-INGobCtVKojlwiXy2pPgKrFTO4HdN4Arz8Dj8BR9ErK7FRR8GI9mvvk1M5okeQ70hDFJTzsFHDKe0uJRsg9S5jOQnD9-4O8lhzHe0OkxBiKVT5M9xlkOnMJ-8qsM6ziotrUOyftRtXZYH5PSd72PdrDekQvf-QYdbhMLbNsx2LEj7wJq29tBDRhPL51uxzjRcSp1Gt0Q1Kb4mFz3g9WqJYugXOxsjNuocoacOwzNmpxt_Lnqia_JWbCm6ZQj8-C_OvLBuqbF2cMOSwN3336sPrnVAskRJXfff5LV1tITePkseVKrNuLh_X-QfHx7vigvZlfX88vyzdVMM8GGGc_zFLKlMblEI0UKRU05itqAkTVTmSww08hAQcq4URrTfLlkGriWQrIiZwfJ651uPy47NLt526oPtlNhXXllq38zzn6uGv-lEoyLvIBJ4OheIPjbEeNQTavR026VQz_GKs0yyRkUQCf0xX_ojR-Dm8bbUELwrBDFRL3aUTr4GAPWf5oBWm3upPp7J-w3ICq0Gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558845787</pqid></control><display><type>article</type><title>Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1)</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Martínez, Ana María ; Giudici, Paula ; Trigubó, Alicia Beatriz ; D’Elía, Raúl ; Heredia, Eduardo ; Ramelli, Rodrigo ; González, Rubén ; Aza, Felipe ; Gilabert, Ulises</creator><creatorcontrib>Martínez, Ana María ; Giudici, Paula ; Trigubó, Alicia Beatriz ; D’Elía, Raúl ; Heredia, Eduardo ; Ramelli, Rodrigo ; González, Rubén ; Aza, Felipe ; Gilabert, Ulises</creatorcontrib><description>Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and varied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14154207</identifier><identifier>PMID: 34361401</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bridgman method ; Chemical etching ; Chemical precipitation ; Crystal dislocations ; Crystal growth ; Crystal structure ; Crystallinity ; Crystallography ; Differential scanning calorimetry ; Dislocation density ; Energy bands ; Energy gap ; Etching ; Homogeneity ; Inclusions ; Infrared spectroscopy ; Ingots ; Photoluminescence ; Precipitates ; Sensors ; Single crystals ; Tellurium ; Vacuum distillation ; Wafers ; X-rays</subject><ispartof>Materials, 2021-07, Vol.14 (15), p.4207</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-466215bdd69ed98217f04e8fd1d9f3a597e5ce31a1234dace26bb3c14c9893763</citedby><cites>FETCH-LOGICAL-c383t-466215bdd69ed98217f04e8fd1d9f3a597e5ce31a1234dace26bb3c14c9893763</cites><orcidid>0000-0001-9696-1014 ; 0000-0001-8630-2146 ; 0000-0002-8154-6114 ; 0000-0003-2104-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Martínez, Ana María</creatorcontrib><creatorcontrib>Giudici, Paula</creatorcontrib><creatorcontrib>Trigubó, Alicia Beatriz</creatorcontrib><creatorcontrib>D’Elía, Raúl</creatorcontrib><creatorcontrib>Heredia, Eduardo</creatorcontrib><creatorcontrib>Ramelli, Rodrigo</creatorcontrib><creatorcontrib>González, Rubén</creatorcontrib><creatorcontrib>Aza, Felipe</creatorcontrib><creatorcontrib>Gilabert, Ulises</creatorcontrib><title>Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1)</title><title>Materials</title><description>Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and varied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.</description><subject>Bridgman method</subject><subject>Chemical etching</subject><subject>Chemical precipitation</subject><subject>Crystal dislocations</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography</subject><subject>Differential scanning calorimetry</subject><subject>Dislocation density</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Etching</subject><subject>Homogeneity</subject><subject>Inclusions</subject><subject>Infrared spectroscopy</subject><subject>Ingots</subject><subject>Photoluminescence</subject><subject>Precipitates</subject><subject>Sensors</subject><subject>Single crystals</subject><subject>Tellurium</subject><subject>Vacuum distillation</subject><subject>Wafers</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdksFu1DAQhiMEolXphSewxKWgbuuJncS-INGobCtVKojlwiXy2pPgKrFTO4HdN4Arz8Dj8BR9ErK7FRR8GI9mvvk1M5okeQ70hDFJTzsFHDKe0uJRsg9S5jOQnD9-4O8lhzHe0OkxBiKVT5M9xlkOnMJ-8qsM6ziotrUOyftRtXZYH5PSd72PdrDekQvf-QYdbhMLbNsx2LEj7wJq29tBDRhPL51uxzjRcSp1Gt0Q1Kb4mFz3g9WqJYugXOxsjNuocoacOwzNmpxt_Lnqia_JWbCm6ZQj8-C_OvLBuqbF2cMOSwN3336sPrnVAskRJXfff5LV1tITePkseVKrNuLh_X-QfHx7vigvZlfX88vyzdVMM8GGGc_zFLKlMblEI0UKRU05itqAkTVTmSww08hAQcq4URrTfLlkGriWQrIiZwfJ651uPy47NLt526oPtlNhXXllq38zzn6uGv-lEoyLvIBJ4OheIPjbEeNQTavR026VQz_GKs0yyRkUQCf0xX_ojR-Dm8bbUELwrBDFRL3aUTr4GAPWf5oBWm3upPp7J-w3ICq0Gg</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Martínez, Ana María</creator><creator>Giudici, Paula</creator><creator>Trigubó, Alicia Beatriz</creator><creator>D’Elía, Raúl</creator><creator>Heredia, Eduardo</creator><creator>Ramelli, Rodrigo</creator><creator>González, Rubén</creator><creator>Aza, Felipe</creator><creator>Gilabert, Ulises</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9696-1014</orcidid><orcidid>https://orcid.org/0000-0001-8630-2146</orcidid><orcidid>https://orcid.org/0000-0002-8154-6114</orcidid><orcidid>https://orcid.org/0000-0003-2104-0397</orcidid></search><sort><creationdate>20210728</creationdate><title>Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1)</title><author>Martínez, Ana María ; Giudici, Paula ; Trigubó, Alicia Beatriz ; D’Elía, Raúl ; Heredia, Eduardo ; Ramelli, Rodrigo ; González, Rubén ; Aza, Felipe ; Gilabert, Ulises</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-466215bdd69ed98217f04e8fd1d9f3a597e5ce31a1234dace26bb3c14c9893763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bridgman method</topic><topic>Chemical etching</topic><topic>Chemical precipitation</topic><topic>Crystal dislocations</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography</topic><topic>Differential scanning calorimetry</topic><topic>Dislocation density</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Etching</topic><topic>Homogeneity</topic><topic>Inclusions</topic><topic>Infrared spectroscopy</topic><topic>Ingots</topic><topic>Photoluminescence</topic><topic>Precipitates</topic><topic>Sensors</topic><topic>Single crystals</topic><topic>Tellurium</topic><topic>Vacuum distillation</topic><topic>Wafers</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Ana María</creatorcontrib><creatorcontrib>Giudici, Paula</creatorcontrib><creatorcontrib>Trigubó, Alicia Beatriz</creatorcontrib><creatorcontrib>D’Elía, Raúl</creatorcontrib><creatorcontrib>Heredia, Eduardo</creatorcontrib><creatorcontrib>Ramelli, Rodrigo</creatorcontrib><creatorcontrib>González, Rubén</creatorcontrib><creatorcontrib>Aza, Felipe</creatorcontrib><creatorcontrib>Gilabert, Ulises</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Ana María</au><au>Giudici, Paula</au><au>Trigubó, Alicia Beatriz</au><au>D’Elía, Raúl</au><au>Heredia, Eduardo</au><au>Ramelli, Rodrigo</au><au>González, Rubén</au><au>Aza, Felipe</au><au>Gilabert, Ulises</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1)</atitle><jtitle>Materials</jtitle><date>2021-07-28</date><risdate>2021</risdate><volume>14</volume><issue>15</issue><spage>4207</spage><pages>4207-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Cd1−xZnxTe (0 ≤ x ≤ 0.1) ingots were obtained by Bridgman’s method using two different speeds in order to find the optimal conditions for single-crystalline growth. Crystalline quality was studied by chemical etching, the elemental composition by wavelength dispersive spectroscopy (WDS), tellurium (Te) precipitates/inclusions concentration by differential scanning calorimetry (DSC), optical transmission by Fourier transformed infrared spectrometry (FTIR), and band gap energy (Egap) by photoluminescence (PL). It was observed that the ingots grown at a lower speed were those of the best crystalline quality, having at most three grains of different crystallographic orientation. The average dislocations density in all of them were similar and correspond to materials of good quality. EPMA results indicated that the homogeneity in the composition was excellent in the ingots central part. The concentration of Te precipitates/inclusions in all ingots was below the instrument (DSC) detection limit, 0.25% wt/wt. In the case of wafers from Cd0.96Zn0.04Te and Cd0.90Zn0.10Te ingots, the optical transmission was better than that of commercial materials and varied between 60% and 70%, while for pure CdTe, the transmission range was between 50% and 55%, the latter being decreased by the presence of Te precipitates/inclusions. The band gap energy Eg of different wafers was experimentally obtained by PL measurements at 76 K. We observed that Eg increased with the Zn concentration of the wafers, following a linear regression comparable to those proposed in the literature, and consistent with the results obtained with other techniques.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34361401</pmid><doi>10.3390/ma14154207</doi><orcidid>https://orcid.org/0000-0001-9696-1014</orcidid><orcidid>https://orcid.org/0000-0001-8630-2146</orcidid><orcidid>https://orcid.org/0000-0002-8154-6114</orcidid><orcidid>https://orcid.org/0000-0003-2104-0397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-07, Vol.14 (15), p.4207 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348671 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Bridgman method Chemical etching Chemical precipitation Crystal dislocations Crystal growth Crystal structure Crystallinity Crystallography Differential scanning calorimetry Dislocation density Energy bands Energy gap Etching Homogeneity Inclusions Infrared spectroscopy Ingots Photoluminescence Precipitates Sensors Single crystals Tellurium Vacuum distillation Wafers X-rays |
title | Crystalline Quality, Composition Homogeneity, Tellurium Precipitates/Inclusions Concentration, Optical Transmission, and Energy Band Gap of Bridgman Grown Single-Crystalline Cd1−xZnxTe (0 ≤ x ≤ 0.1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%20Quality,%20Composition%20Homogeneity,%20Tellurium%20Precipitates/Inclusions%20Concentration,%20Optical%20Transmission,%20and%20Energy%20Band%20Gap%20of%20Bridgman%20Grown%20Single-Crystalline%20Cd1%E2%88%92xZnxTe%20(0%20%E2%89%A4%20x%20%E2%89%A4%200.1)&rft.jtitle=Materials&rft.au=Mart%C3%ADnez,%20Ana%20Mar%C3%ADa&rft.date=2021-07-28&rft.volume=14&rft.issue=15&rft.spage=4207&rft.pages=4207-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14154207&rft_dat=%3Cproquest_pubme%3E2558845787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558845787&rft_id=info:pmid/34361401&rfr_iscdi=true |