Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology
This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder con...
Gespeichert in:
Veröffentlicht in: | Materials 2021-07, Vol.14 (15), p.4141 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 4141 |
container_title | Materials |
container_volume | 14 |
creator | Turichin, Gleb A. Valdaytseva, Ekaterina A. Stankevich, Stanislav L. Udin, Ilya N. |
description | This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy |
doi_str_mv | 10.3390/ma14154141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559431929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c64a121127f2d9c96dde85a630ec94b750d1bc0f2a2b5ee167b87a798f40042e3</originalsourceid><addsrcrecordid>eNpdkUtLAzEQgIMoKtqLvyDgRYRqXptNLoLUJxYUrOeQzc62K7tJTXaF_nu3tPiaw8zAfHzMMAidUHLBuSaXraWCZmJIO-iQai3HVAux-6s_QKOU3skQnFPF9D464IJLynl2iJ4moV32HUT8Wrd9Y7s6eBwq_LAqYyhX3ra1w9aXeLaA2NoGv8TgICVIuPb4ZnqDZ-AWPjRhvjpGe5VtEoy29Qi93d3OJg_j6fP94-R6OnZc8W7spLCUUcryipXaaVmWoDIrOQGnRZFnpKSFIxWzrMgAqMwLldtcq0oQIhjwI3S18S77ooXSge-ibcwy1q2NKxNsbf5OfL0w8_BpFBeKMDkIzraCGD56SJ1p6-SgaayH0CfDskwLTjXTA3r6D30PffTDeWtKKSEZWQvPN5SLIaUI1fcylJj1m8zPm_gXyUuC5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558846206</pqid></control><display><type>article</type><title>Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Turichin, Gleb A. ; Valdaytseva, Ekaterina A. ; Stankevich, Stanislav L. ; Udin, Ilya N.</creator><creatorcontrib>Turichin, Gleb A. ; Valdaytseva, Ekaterina A. ; Stankevich, Stanislav L. ; Udin, Ilya N.</creatorcontrib><description>This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14154141</identifier><identifier>PMID: 34361335</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Boundary layer flow ; Computer simulation ; Convective heat transfer ; Finite element analysis ; Fluid mechanics ; Free surfaces ; Heat transfer ; Laser beam heating ; Laser deposition ; Lasers ; Marangoni convection ; Optical properties ; Physical properties ; Radiation ; Spatial distribution ; Substrates ; Temperature ; Titanium base alloys ; Velocity</subject><ispartof>Materials, 2021-07, Vol.14 (15), p.4141</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c64a121127f2d9c96dde85a630ec94b750d1bc0f2a2b5ee167b87a798f40042e3</citedby><cites>FETCH-LOGICAL-c383t-c64a121127f2d9c96dde85a630ec94b750d1bc0f2a2b5ee167b87a798f40042e3</cites><orcidid>0000-0002-6570-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348026/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348026/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Turichin, Gleb A.</creatorcontrib><creatorcontrib>Valdaytseva, Ekaterina A.</creatorcontrib><creatorcontrib>Stankevich, Stanislav L.</creatorcontrib><creatorcontrib>Udin, Ilya N.</creatorcontrib><title>Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology</title><title>Materials</title><description>This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy</description><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Finite element analysis</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Heat transfer</subject><subject>Laser beam heating</subject><subject>Laser deposition</subject><subject>Lasers</subject><subject>Marangoni convection</subject><subject>Optical properties</subject><subject>Physical properties</subject><subject>Radiation</subject><subject>Spatial distribution</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Titanium base alloys</subject><subject>Velocity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEQgIMoKtqLvyDgRYRqXptNLoLUJxYUrOeQzc62K7tJTXaF_nu3tPiaw8zAfHzMMAidUHLBuSaXraWCZmJIO-iQai3HVAux-6s_QKOU3skQnFPF9D464IJLynl2iJ4moV32HUT8Wrd9Y7s6eBwq_LAqYyhX3ra1w9aXeLaA2NoGv8TgICVIuPb4ZnqDZ-AWPjRhvjpGe5VtEoy29Qi93d3OJg_j6fP94-R6OnZc8W7spLCUUcryipXaaVmWoDIrOQGnRZFnpKSFIxWzrMgAqMwLldtcq0oQIhjwI3S18S77ooXSge-ibcwy1q2NKxNsbf5OfL0w8_BpFBeKMDkIzraCGD56SJ1p6-SgaayH0CfDskwLTjXTA3r6D30PffTDeWtKKSEZWQvPN5SLIaUI1fcylJj1m8zPm_gXyUuC5g</recordid><startdate>20210725</startdate><enddate>20210725</enddate><creator>Turichin, Gleb A.</creator><creator>Valdaytseva, Ekaterina A.</creator><creator>Stankevich, Stanislav L.</creator><creator>Udin, Ilya N.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6570-2084</orcidid></search><sort><creationdate>20210725</creationdate><title>Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology</title><author>Turichin, Gleb A. ; Valdaytseva, Ekaterina A. ; Stankevich, Stanislav L. ; Udin, Ilya N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c64a121127f2d9c96dde85a630ec94b750d1bc0f2a2b5ee167b87a798f40042e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Finite element analysis</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Heat transfer</topic><topic>Laser beam heating</topic><topic>Laser deposition</topic><topic>Lasers</topic><topic>Marangoni convection</topic><topic>Optical properties</topic><topic>Physical properties</topic><topic>Radiation</topic><topic>Spatial distribution</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Titanium base alloys</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turichin, Gleb A.</creatorcontrib><creatorcontrib>Valdaytseva, Ekaterina A.</creatorcontrib><creatorcontrib>Stankevich, Stanislav L.</creatorcontrib><creatorcontrib>Udin, Ilya N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turichin, Gleb A.</au><au>Valdaytseva, Ekaterina A.</au><au>Stankevich, Stanislav L.</au><au>Udin, Ilya N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology</atitle><jtitle>Materials</jtitle><date>2021-07-25</date><risdate>2021</risdate><volume>14</volume><issue>15</issue><spage>4141</spage><pages>4141-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas–powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34361335</pmid><doi>10.3390/ma14154141</doi><orcidid>https://orcid.org/0000-0002-6570-2084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-07, Vol.14 (15), p.4141 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348026 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Boundary conditions Boundary layer flow Computer simulation Convective heat transfer Finite element analysis Fluid mechanics Free surfaces Heat transfer Laser beam heating Laser deposition Lasers Marangoni convection Optical properties Physical properties Radiation Spatial distribution Substrates Temperature Titanium base alloys Velocity |
title | Computer Simulation of Hydrodynamic and Thermal Processes in DLD Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Simulation%20of%20Hydrodynamic%20and%20Thermal%20Processes%20in%20DLD%20Technology&rft.jtitle=Materials&rft.au=Turichin,%20Gleb%20A.&rft.date=2021-07-25&rft.volume=14&rft.issue=15&rft.spage=4141&rft.pages=4141-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14154141&rft_dat=%3Cproquest_pubme%3E2559431929%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558846206&rft_id=info:pmid/34361335&rfr_iscdi=true |