THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes
Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oli...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (31), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 31 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Yellajoshyula, Dhananjay Pappas, Samuel S. Rogers, Abigail E. Choudhury, Biswa Reed, Xylena Ding, Jinhui Cookson, Mark R. Shakkottai, Vikram G. Giger, Roman J. Dauer, William T. |
description | Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1
−/− OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1
−/− OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development. |
doi_str_mv | 10.1073/pnas.2100862118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052725</jstor_id><sourcerecordid>27052725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-5379b702a9de3a08bf8aff288233314d2da80690979802e89034a555014ca83d3</originalsourceid><addsrcrecordid>eNpdkcFP2zAUh62JaRTYeadNkbjsEvr87MT2BQlVDJCYxqGcLTd2QqrE7uwEqf896Qpl28mH3_e-56cfIV8oXFAQbL7xJl0gBZAlUio_kBkFRfOSKzgiMwAUueTIj8lJSmsAUIWET-SYcUYRsZyRx-Xt1QPN-mDHzgwuZaFrm2CdtzFU28FlvRnGaIY2-Gy1zaJrdlzrm-x68TOzronG7tPWZ902hRR6l87Ix9p0yX1-fU_J44_r5eI2v_91c7e4us8rztmQF0yolQA0yjpmQK5qaeoapUTGGOUWrZFQKlBCSUAnFTBuiqIAyisjmWWn5HLv3Yyr3tnK-SGaTm9i25u41cG0-t_Et0-6Cc9aMl5KISbB91dBDL9Hlwbdt6lyXWe8C2PSOG0rOSoqJ_T8P3Qdxuin8yaqhMnG_wjne6qKIaXo6sNnKOhdZXpXmX6vbJr49vcNB_6town4ugfWaQjxkKOAAgUW7AWcqpvZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560877477</pqid></control><display><type>article</type><title>THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yellajoshyula, Dhananjay ; Pappas, Samuel S. ; Rogers, Abigail E. ; Choudhury, Biswa ; Reed, Xylena ; Ding, Jinhui ; Cookson, Mark R. ; Shakkottai, Vikram G. ; Giger, Roman J. ; Dauer, William T.</creator><creatorcontrib>Yellajoshyula, Dhananjay ; Pappas, Samuel S. ; Rogers, Abigail E. ; Choudhury, Biswa ; Reed, Xylena ; Ding, Jinhui ; Cookson, Mark R. ; Shakkottai, Vikram G. ; Giger, Roman J. ; Dauer, William T.</creatorcontrib><description>Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1
−/− OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1
−/− OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2100862118</identifier><identifier>PMID: 34312226</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Catabolism ; Cells (biology) ; Central nervous system ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Extracellular matrix ; Extracellular Matrix - metabolism ; Gene Expression Regulation ; Glial stem cells ; Glycosaminoglycans ; In vivo methods and tests ; Lysosomes ; Lysosomes - metabolism ; Maturation ; Mice ; Mice, Knockout ; Myelination ; Progenitor cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (31), p.1-11</ispartof><rights>Copyright National Academy of Sciences Aug 3, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-5379b702a9de3a08bf8aff288233314d2da80690979802e89034a555014ca83d3</citedby><cites>FETCH-LOGICAL-c443t-5379b702a9de3a08bf8aff288233314d2da80690979802e89034a555014ca83d3</cites><orcidid>0000-0002-6980-2058 ; 0000-0003-2742-6469 ; 0000-0003-1775-7504 ; 0000-0002-2031-0917 ; 0000-0002-1058-3831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052725$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052725$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34312226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yellajoshyula, Dhananjay</creatorcontrib><creatorcontrib>Pappas, Samuel S.</creatorcontrib><creatorcontrib>Rogers, Abigail E.</creatorcontrib><creatorcontrib>Choudhury, Biswa</creatorcontrib><creatorcontrib>Reed, Xylena</creatorcontrib><creatorcontrib>Ding, Jinhui</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Shakkottai, Vikram G.</creatorcontrib><creatorcontrib>Giger, Roman J.</creatorcontrib><creatorcontrib>Dauer, William T.</creatorcontrib><title>THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1
−/− OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1
−/− OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Catabolism</subject><subject>Cells (biology)</subject><subject>Central nervous system</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glial stem cells</subject><subject>Glycosaminoglycans</subject><subject>In vivo methods and tests</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Maturation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myelination</subject><subject>Progenitor cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFP2zAUh62JaRTYeadNkbjsEvr87MT2BQlVDJCYxqGcLTd2QqrE7uwEqf896Qpl28mH3_e-56cfIV8oXFAQbL7xJl0gBZAlUio_kBkFRfOSKzgiMwAUueTIj8lJSmsAUIWET-SYcUYRsZyRx-Xt1QPN-mDHzgwuZaFrm2CdtzFU28FlvRnGaIY2-Gy1zaJrdlzrm-x68TOzronG7tPWZ902hRR6l87Ix9p0yX1-fU_J44_r5eI2v_91c7e4us8rztmQF0yolQA0yjpmQK5qaeoapUTGGOUWrZFQKlBCSUAnFTBuiqIAyisjmWWn5HLv3Yyr3tnK-SGaTm9i25u41cG0-t_Et0-6Cc9aMl5KISbB91dBDL9Hlwbdt6lyXWe8C2PSOG0rOSoqJ_T8P3Qdxuin8yaqhMnG_wjne6qKIaXo6sNnKOhdZXpXmX6vbJr49vcNB_6town4ugfWaQjxkKOAAgUW7AWcqpvZ</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Yellajoshyula, Dhananjay</creator><creator>Pappas, Samuel S.</creator><creator>Rogers, Abigail E.</creator><creator>Choudhury, Biswa</creator><creator>Reed, Xylena</creator><creator>Ding, Jinhui</creator><creator>Cookson, Mark R.</creator><creator>Shakkottai, Vikram G.</creator><creator>Giger, Roman J.</creator><creator>Dauer, William T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6980-2058</orcidid><orcidid>https://orcid.org/0000-0003-2742-6469</orcidid><orcidid>https://orcid.org/0000-0003-1775-7504</orcidid><orcidid>https://orcid.org/0000-0002-2031-0917</orcidid><orcidid>https://orcid.org/0000-0002-1058-3831</orcidid></search><sort><creationdate>20210803</creationdate><title>THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes</title><author>Yellajoshyula, Dhananjay ; Pappas, Samuel S. ; Rogers, Abigail E. ; Choudhury, Biswa ; Reed, Xylena ; Ding, Jinhui ; Cookson, Mark R. ; Shakkottai, Vikram G. ; Giger, Roman J. ; Dauer, William T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-5379b702a9de3a08bf8aff288233314d2da80690979802e89034a555014ca83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Catabolism</topic><topic>Cells (biology)</topic><topic>Central nervous system</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glial stem cells</topic><topic>Glycosaminoglycans</topic><topic>In vivo methods and tests</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Maturation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myelination</topic><topic>Progenitor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yellajoshyula, Dhananjay</creatorcontrib><creatorcontrib>Pappas, Samuel S.</creatorcontrib><creatorcontrib>Rogers, Abigail E.</creatorcontrib><creatorcontrib>Choudhury, Biswa</creatorcontrib><creatorcontrib>Reed, Xylena</creatorcontrib><creatorcontrib>Ding, Jinhui</creatorcontrib><creatorcontrib>Cookson, Mark R.</creatorcontrib><creatorcontrib>Shakkottai, Vikram G.</creatorcontrib><creatorcontrib>Giger, Roman J.</creatorcontrib><creatorcontrib>Dauer, William T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yellajoshyula, Dhananjay</au><au>Pappas, Samuel S.</au><au>Rogers, Abigail E.</au><au>Choudhury, Biswa</au><au>Reed, Xylena</au><au>Ding, Jinhui</au><au>Cookson, Mark R.</au><au>Shakkottai, Vikram G.</au><au>Giger, Roman J.</au><au>Dauer, William T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>118</volume><issue>31</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1
−/− OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1
−/− OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34312226</pmid><doi>10.1073/pnas.2100862118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6980-2058</orcidid><orcidid>https://orcid.org/0000-0003-2742-6469</orcidid><orcidid>https://orcid.org/0000-0003-1775-7504</orcidid><orcidid>https://orcid.org/0000-0002-2031-0917</orcidid><orcidid>https://orcid.org/0000-0002-1058-3831</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (31), p.1-11 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346877 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Catabolism Cells (biology) Central nervous system DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Extracellular matrix Extracellular Matrix - metabolism Gene Expression Regulation Glial stem cells Glycosaminoglycans In vivo methods and tests Lysosomes Lysosomes - metabolism Maturation Mice Mice, Knockout Myelination Progenitor cells |
title | THAP1 modulates oligodendrocyte maturation by regulating ECM degradation in lysosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THAP1%20modulates%20oligodendrocyte%20maturation%20by%20regulating%20ECM%20degradation%20in%20lysosomes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yellajoshyula,%20Dhananjay&rft.date=2021-08-03&rft.volume=118&rft.issue=31&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2100862118&rft_dat=%3Cjstor_pubme%3E27052725%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560877477&rft_id=info:pmid/34312226&rft_jstor_id=27052725&rfr_iscdi=true |