Global upper-atmospheric heating on Jupiter by the polar aurorae
Jupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives 1 – 3 . Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presum...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-08, Vol.596 (7870), p.54-57 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 7870 |
container_start_page | 54 |
container_title | Nature (London) |
container_volume | 596 |
creator | O’Donoghue, J. Moore, L. Bhakyapaibul, T. Melin, H. Stallard, T. Connerney, J. E. P. Tao, C. |
description | Jupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives
1
–
3
. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet
4
–
6
. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet
3
,
5
,
7
–
10
. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere
2
,
11
–
13
. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.
High-resolution observations confirm that Jupiter’s global upper atmosphere is heated by transport of energy from the polar aurora. |
doi_str_mv | 10.1038/s41586-021-03706-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559478356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4d0f3b01d19a0a8c73f16439ed067ab34dbcc727a7798aeab060e5a6e794ffe23</originalsourceid><addsrcrecordid>eNp9kc9P1UAQxzcGI0_wH-BAmnDhsjLb_X0xGoIoIfEi5820nb5X0tetu62E_97iQ0APnuYwn_nOTD6MHQl4L0C6s6yEdoZDKThIC4bfvWIroazhyji7x1YApePgpNlnb3O-BQAtrHrD9qWSypdertjHyz5W2BfzOFLiOG1jHjeUurrYEE7dsC7iUFzNYzdRKqr7YtpQMcYeU4FzignpkL1usc_07rEesJvPF9_Pv_Drb5dfzz9d81pZNXHVQCsrEI3wCOhqK1thlPTUgLFYSdVUdW1Li9Z6h4QVGCCNhqxXbUulPGAfdrnjXG2pqWmYEvZhTN0W032I2IW_O0O3Cev4MzgpndZ-CTh9DEjxx0x5Ctsu19T3OFCccyi1dkqD97CgJ_-gt3FOw_LeA-WVdVKbhSp3VJ1izonap2MEhAdBYScoLILCb0Hhbhk6fvnG08gfIwsgd0BeWsOa0vPu_8T-AhksnQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559478356</pqid></control><display><type>article</type><title>Global upper-atmospheric heating on Jupiter by the polar aurorae</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>O’Donoghue, J. ; Moore, L. ; Bhakyapaibul, T. ; Melin, H. ; Stallard, T. ; Connerney, J. E. P. ; Tao, C.</creator><creatorcontrib>O’Donoghue, J. ; Moore, L. ; Bhakyapaibul, T. ; Melin, H. ; Stallard, T. ; Connerney, J. E. P. ; Tao, C.</creatorcontrib><description>Jupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives
1
–
3
. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet
4
–
6
. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet
3
,
5
,
7
–
10
. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere
2
,
11
–
13
. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.
High-resolution observations confirm that Jupiter’s global upper atmosphere is heated by transport of energy from the polar aurora.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03706-w</identifier><identifier>PMID: 34349293</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/445/823 ; 639/33/445/846 ; 639/33/525/868 ; 639/33/525/869 ; Acoustic waves ; Atmosphere ; Atmospheric heating ; Atmospheric models ; Auroral emissions ; Auroras ; Compression ; Energy ; Equator ; Equatorial regions ; Gravity waves ; Heat ; Heat sources ; Heating ; High temperature ; Humanities and Social Sciences ; Infrared spectroscopy ; Ionosphere ; Jupiter ; Jupiter atmosphere ; Latitude ; Lower atmosphere ; Magnetic fields ; Magnetospheres ; multidisciplinary ; Polar environments ; Polar regions ; Propagation ; Science ; Science (multidisciplinary) ; Solar wind ; Spatial discrimination ; Spatial resolution ; Strong winds ; Temperature gradients ; Upper atmosphere ; Wind</subject><ispartof>Nature (London), 2021-08, Vol.596 (7870), p.54-57</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>Copyright Nature Publishing Group Aug 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4d0f3b01d19a0a8c73f16439ed067ab34dbcc727a7798aeab060e5a6e794ffe23</citedby><cites>FETCH-LOGICAL-c474t-4d0f3b01d19a0a8c73f16439ed067ab34dbcc727a7798aeab060e5a6e794ffe23</cites><orcidid>0000-0003-4481-9862 ; 0000-0001-5971-2633 ; 0000-0001-8817-0589 ; 0000-0002-4218-1191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03706-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03706-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34349293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Donoghue, J.</creatorcontrib><creatorcontrib>Moore, L.</creatorcontrib><creatorcontrib>Bhakyapaibul, T.</creatorcontrib><creatorcontrib>Melin, H.</creatorcontrib><creatorcontrib>Stallard, T.</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><title>Global upper-atmospheric heating on Jupiter by the polar aurorae</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Jupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives
1
–
3
. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet
4
–
6
. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet
3
,
5
,
7
–
10
. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere
2
,
11
–
13
. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.
High-resolution observations confirm that Jupiter’s global upper atmosphere is heated by transport of energy from the polar aurora.</description><subject>639/33/445/823</subject><subject>639/33/445/846</subject><subject>639/33/525/868</subject><subject>639/33/525/869</subject><subject>Acoustic waves</subject><subject>Atmosphere</subject><subject>Atmospheric heating</subject><subject>Atmospheric models</subject><subject>Auroral emissions</subject><subject>Auroras</subject><subject>Compression</subject><subject>Energy</subject><subject>Equator</subject><subject>Equatorial regions</subject><subject>Gravity waves</subject><subject>Heat</subject><subject>Heat sources</subject><subject>Heating</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Infrared spectroscopy</subject><subject>Ionosphere</subject><subject>Jupiter</subject><subject>Jupiter atmosphere</subject><subject>Latitude</subject><subject>Lower atmosphere</subject><subject>Magnetic fields</subject><subject>Magnetospheres</subject><subject>multidisciplinary</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar wind</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Strong winds</subject><subject>Temperature gradients</subject><subject>Upper atmosphere</subject><subject>Wind</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9P1UAQxzcGI0_wH-BAmnDhsjLb_X0xGoIoIfEi5820nb5X0tetu62E_97iQ0APnuYwn_nOTD6MHQl4L0C6s6yEdoZDKThIC4bfvWIroazhyji7x1YApePgpNlnb3O-BQAtrHrD9qWSypdertjHyz5W2BfzOFLiOG1jHjeUurrYEE7dsC7iUFzNYzdRKqr7YtpQMcYeU4FzignpkL1usc_07rEesJvPF9_Pv_Drb5dfzz9d81pZNXHVQCsrEI3wCOhqK1thlPTUgLFYSdVUdW1Li9Z6h4QVGCCNhqxXbUulPGAfdrnjXG2pqWmYEvZhTN0W032I2IW_O0O3Cev4MzgpndZ-CTh9DEjxx0x5Ctsu19T3OFCccyi1dkqD97CgJ_-gt3FOw_LeA-WVdVKbhSp3VJ1izonap2MEhAdBYScoLILCb0Hhbhk6fvnG08gfIwsgd0BeWsOa0vPu_8T-AhksnQ4</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>O’Donoghue, J.</creator><creator>Moore, L.</creator><creator>Bhakyapaibul, T.</creator><creator>Melin, H.</creator><creator>Stallard, T.</creator><creator>Connerney, J. E. P.</creator><creator>Tao, C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4481-9862</orcidid><orcidid>https://orcid.org/0000-0001-5971-2633</orcidid><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid><orcidid>https://orcid.org/0000-0002-4218-1191</orcidid></search><sort><creationdate>20210805</creationdate><title>Global upper-atmospheric heating on Jupiter by the polar aurorae</title><author>O’Donoghue, J. ; Moore, L. ; Bhakyapaibul, T. ; Melin, H. ; Stallard, T. ; Connerney, J. E. P. ; Tao, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4d0f3b01d19a0a8c73f16439ed067ab34dbcc727a7798aeab060e5a6e794ffe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/33/445/823</topic><topic>639/33/445/846</topic><topic>639/33/525/868</topic><topic>639/33/525/869</topic><topic>Acoustic waves</topic><topic>Atmosphere</topic><topic>Atmospheric heating</topic><topic>Atmospheric models</topic><topic>Auroral emissions</topic><topic>Auroras</topic><topic>Compression</topic><topic>Energy</topic><topic>Equator</topic><topic>Equatorial regions</topic><topic>Gravity waves</topic><topic>Heat</topic><topic>Heat sources</topic><topic>Heating</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Infrared spectroscopy</topic><topic>Ionosphere</topic><topic>Jupiter</topic><topic>Jupiter atmosphere</topic><topic>Latitude</topic><topic>Lower atmosphere</topic><topic>Magnetic fields</topic><topic>Magnetospheres</topic><topic>multidisciplinary</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar wind</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Strong winds</topic><topic>Temperature gradients</topic><topic>Upper atmosphere</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Donoghue, J.</creatorcontrib><creatorcontrib>Moore, L.</creatorcontrib><creatorcontrib>Bhakyapaibul, T.</creatorcontrib><creatorcontrib>Melin, H.</creatorcontrib><creatorcontrib>Stallard, T.</creatorcontrib><creatorcontrib>Connerney, J. E. P.</creatorcontrib><creatorcontrib>Tao, C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Donoghue, J.</au><au>Moore, L.</au><au>Bhakyapaibul, T.</au><au>Melin, H.</au><au>Stallard, T.</au><au>Connerney, J. E. P.</au><au>Tao, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global upper-atmospheric heating on Jupiter by the polar aurorae</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-08-05</date><risdate>2021</risdate><volume>596</volume><issue>7870</issue><spage>54</spage><epage>57</epage><pages>54-57</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Jupiter’s upper atmosphere is considerably hotter than expected from the amount of sunlight that it receives
1
–
3
. Processes that couple the magnetosphere to the atmosphere give rise to intense auroral emissions and enormous deposition of energy in the magnetic polar regions, so it has been presumed that redistribution of this energy could heat the rest of the planet
4
–
6
. Instead, most thermospheric global circulation models demonstrate that auroral energy is trapped at high latitudes by the strong winds on this rapidly rotating planet
3
,
5
,
7
–
10
. Consequently, other possible heat sources have continued to be studied, such as heating by gravity waves and acoustic waves emanating from the lower atmosphere
2
,
11
–
13
. Each mechanism would imprint a unique signature on the global Jovian temperature gradients, thus revealing the dominant heat source, but a lack of planet-wide, high-resolution data has meant that these gradients have not been determined. Here we report infrared spectroscopy of Jupiter with a spatial resolution of 2 degrees in longitude and latitude, extending from pole to equator. We find that temperatures decrease steadily from the auroral polar regions to the equator. Furthermore, during a period of enhanced activity possibly driven by a solar wind compression, a high-temperature planetary-scale structure was observed that may be propagating from the aurora. These observations indicate that Jupiter’s upper atmosphere is predominantly heated by the redistribution of auroral energy.
High-resolution observations confirm that Jupiter’s global upper atmosphere is heated by transport of energy from the polar aurora.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34349293</pmid><doi>10.1038/s41586-021-03706-w</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4481-9862</orcidid><orcidid>https://orcid.org/0000-0001-5971-2633</orcidid><orcidid>https://orcid.org/0000-0001-8817-0589</orcidid><orcidid>https://orcid.org/0000-0002-4218-1191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-08, Vol.596 (7870), p.54-57 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338559 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | 639/33/445/823 639/33/445/846 639/33/525/868 639/33/525/869 Acoustic waves Atmosphere Atmospheric heating Atmospheric models Auroral emissions Auroras Compression Energy Equator Equatorial regions Gravity waves Heat Heat sources Heating High temperature Humanities and Social Sciences Infrared spectroscopy Ionosphere Jupiter Jupiter atmosphere Latitude Lower atmosphere Magnetic fields Magnetospheres multidisciplinary Polar environments Polar regions Propagation Science Science (multidisciplinary) Solar wind Spatial discrimination Spatial resolution Strong winds Temperature gradients Upper atmosphere Wind |
title | Global upper-atmospheric heating on Jupiter by the polar aurorae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20upper-atmospheric%20heating%20on%20Jupiter%20by%20the%20polar%20aurorae&rft.jtitle=Nature%20(London)&rft.au=O%E2%80%99Donoghue,%20J.&rft.date=2021-08-05&rft.volume=596&rft.issue=7870&rft.spage=54&rft.epage=57&rft.pages=54-57&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03706-w&rft_dat=%3Cproquest_pubme%3E2559478356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559478356&rft_id=info:pmid/34349293&rfr_iscdi=true |