Modeling of Quasi-Static Floating-Gate Transistor Biosensors

Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/diel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2021-05, Vol.6 (5), p.1910-1917
Hauptverfasser: Thomas, Mathew S, Adrahtas, Demetra Z, Frisbie, C. Daniel, Dorfman, Kevin D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1917
container_issue 5
container_start_page 1910
container_title ACS sensors
container_volume 6
creator Thomas, Mathew S
Adrahtas, Demetra Z
Frisbie, C. Daniel
Dorfman, Kevin D
description Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (
doi_str_mv 10.1021/acssensors.1c00261
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8336320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518225728</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-7692e00ccbb2ab04b19fcb34551cb2b58329cb7da8e5ab9ee1bf15060b9f8c9f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobsz9AS-kl9505qNpExBBh5vCRMR5HZIsnRldMpNW2L-3sjrnjVfnwHk_Dg8A5wiOEMToSuoYjYs-xBHSEOIcHYE-JgVPSc6z44O9B4YxriCEiOaYMngKeoQwlmNG-uD6yS9MZd0y8WXy0sho09da1lYnk8q30y3TqaxNMg_SRRtrH5I767vmM3BSyiqaYTcH4G1yPx8_pLPn6eP4dpbKLEN1WuQcGwi1VgpLBTOFeKkVyShFWmFFGcFcq2IhmaFScWOQKhGFOVS8ZJqXZABudrmbRq3NQhtXB1mJTbBrGbbCSyv-Xpx9F0v_KRghOcGwDbjsAoL_aEysxdpGbapKOuObKDBFDGNatEgGAO-kOvgYgyn3NQiKb_Lil7zoyLemi8MH95Yfzq1gtBO0ZrHyTXAtr_8SvwBzl5No</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518225728</pqid></control><display><type>article</type><title>Modeling of Quasi-Static Floating-Gate Transistor Biosensors</title><source>American Chemical Society</source><creator>Thomas, Mathew S ; Adrahtas, Demetra Z ; Frisbie, C. Daniel ; Dorfman, Kevin D</creator><creatorcontrib>Thomas, Mathew S ; Adrahtas, Demetra Z ; Frisbie, C. Daniel ; Dorfman, Kevin D</creatorcontrib><description>Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (&lt;1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.1c00261</identifier><identifier>PMID: 33886283</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2021-05, Vol.6 (5), p.1910-1917</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-7692e00ccbb2ab04b19fcb34551cb2b58329cb7da8e5ab9ee1bf15060b9f8c9f3</citedby><cites>FETCH-LOGICAL-a441t-7692e00ccbb2ab04b19fcb34551cb2b58329cb7da8e5ab9ee1bf15060b9f8c9f3</cites><orcidid>0000-0002-4735-2228 ; 0000-0003-4252-8500 ; 0000-0003-0065-5157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.1c00261$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.1c00261$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33886283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Mathew S</creatorcontrib><creatorcontrib>Adrahtas, Demetra Z</creatorcontrib><creatorcontrib>Frisbie, C. Daniel</creatorcontrib><creatorcontrib>Dorfman, Kevin D</creatorcontrib><title>Modeling of Quasi-Static Floating-Gate Transistor Biosensors</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (&lt;1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobsz9AS-kl9505qNpExBBh5vCRMR5HZIsnRldMpNW2L-3sjrnjVfnwHk_Dg8A5wiOEMToSuoYjYs-xBHSEOIcHYE-JgVPSc6z44O9B4YxriCEiOaYMngKeoQwlmNG-uD6yS9MZd0y8WXy0sho09da1lYnk8q30y3TqaxNMg_SRRtrH5I767vmM3BSyiqaYTcH4G1yPx8_pLPn6eP4dpbKLEN1WuQcGwi1VgpLBTOFeKkVyShFWmFFGcFcq2IhmaFScWOQKhGFOVS8ZJqXZABudrmbRq3NQhtXB1mJTbBrGbbCSyv-Xpx9F0v_KRghOcGwDbjsAoL_aEysxdpGbapKOuObKDBFDGNatEgGAO-kOvgYgyn3NQiKb_Lil7zoyLemi8MH95Yfzq1gtBO0ZrHyTXAtr_8SvwBzl5No</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Thomas, Mathew S</creator><creator>Adrahtas, Demetra Z</creator><creator>Frisbie, C. Daniel</creator><creator>Dorfman, Kevin D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4735-2228</orcidid><orcidid>https://orcid.org/0000-0003-4252-8500</orcidid><orcidid>https://orcid.org/0000-0003-0065-5157</orcidid></search><sort><creationdate>20210528</creationdate><title>Modeling of Quasi-Static Floating-Gate Transistor Biosensors</title><author>Thomas, Mathew S ; Adrahtas, Demetra Z ; Frisbie, C. Daniel ; Dorfman, Kevin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-7692e00ccbb2ab04b19fcb34551cb2b58329cb7da8e5ab9ee1bf15060b9f8c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Mathew S</creatorcontrib><creatorcontrib>Adrahtas, Demetra Z</creatorcontrib><creatorcontrib>Frisbie, C. Daniel</creatorcontrib><creatorcontrib>Dorfman, Kevin D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Mathew S</au><au>Adrahtas, Demetra Z</au><au>Frisbie, C. Daniel</au><au>Dorfman, Kevin D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Quasi-Static Floating-Gate Transistor Biosensors</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2021-05-28</date><risdate>2021</risdate><volume>6</volume><issue>5</issue><spage>1910</spage><epage>1917</epage><pages>1910-1917</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (&lt;1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33886283</pmid><doi>10.1021/acssensors.1c00261</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4735-2228</orcidid><orcidid>https://orcid.org/0000-0003-4252-8500</orcidid><orcidid>https://orcid.org/0000-0003-0065-5157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2021-05, Vol.6 (5), p.1910-1917
issn 2379-3694
2379-3694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8336320
source American Chemical Society
title Modeling of Quasi-Static Floating-Gate Transistor Biosensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Quasi-Static%20Floating-Gate%20Transistor%20Biosensors&rft.jtitle=ACS%20sensors&rft.au=Thomas,%20Mathew%20S&rft.date=2021-05-28&rft.volume=6&rft.issue=5&rft.spage=1910&rft.epage=1917&rft.pages=1910-1917&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.1c00261&rft_dat=%3Cproquest_pubme%3E2518225728%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518225728&rft_id=info:pmid/33886283&rfr_iscdi=true