Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology

Background This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. Methods Patients with oral epithelial dysplasia at one hospital were selected as the ‘train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2021-08, Vol.125 (3), p.413-421
Hauptverfasser: Sathasivam, Hans Prakash, Kist, Ralf, Sloan, Philip, Thomson, Peter, Nugent, Michael, Alexander, John, Haider, Syed, Robinson, Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 3
container_start_page 413
container_title British journal of cancer
container_volume 125
creator Sathasivam, Hans Prakash
Kist, Ralf
Sloan, Philip
Thomson, Peter
Nugent, Michael
Alexander, John
Haider, Syed
Robinson, Max
description Background This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. Methods Patients with oral epithelial dysplasia at one hospital were selected as the ‘training set’ ( n  = 56) whilst those at another hospital were selected for the ‘test set’ ( n  = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature. Results A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p  = 0.0003]. Conclusions This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.
doi_str_mv 10.1038/s41416-021-01411-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8329212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557305177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8c3f3be083a581e281ccf8a79ec88432ee24e59fca0c1f9a23b309b09df81a643</originalsourceid><addsrcrecordid>eNp9kctuFTEMhiMEoqeFF2CBIrFOyWWmSTZIqCoXqRIsYB1lMp45qTLJkGQqnT49oacU2LCyLf_-bOtH6BWj54wK9bZ0rGMXhHJGaMsYuXuCdqwXnDDF5VO0o5RKQjWnJ-i0lJtWaqrkc3QihJZcdv0O3X7NMHpXfZxx3QN2wUfvbMBpqy4tgNOEU271mirE6m0IB7zY4OdoY8WjLymPkAveyj0i21hc9mtNi3dksAVGvKQAbgs249XWfQppPrxAzyYbCrx8iGfo-4erb5efyPWXj58v318T18muEuXEJAagStheMeCKOTcpKzU4pTrBAXgHvZ6cpY5N2nIxCKoHqsdJMXvRiTP07shdt2GB0bUX2jNmzX6x-WCS9ebfTvR7M6dbowTXnPEGePMAyOnHBqWam7Tl2G42vO-loD2Tsqn4UeVyKiXD9LiBUfPLK3P0yjSvzL1X5q4Nvf77tseR3-Y0gTgKSmvFGfKf3f_B_gTnvaSm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557305177</pqid></control><display><type>article</type><title>Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sathasivam, Hans Prakash ; Kist, Ralf ; Sloan, Philip ; Thomson, Peter ; Nugent, Michael ; Alexander, John ; Haider, Syed ; Robinson, Max</creator><creatorcontrib>Sathasivam, Hans Prakash ; Kist, Ralf ; Sloan, Philip ; Thomson, Peter ; Nugent, Michael ; Alexander, John ; Haider, Syed ; Robinson, Max</creatorcontrib><description>Background This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. Methods Patients with oral epithelial dysplasia at one hospital were selected as the ‘training set’ ( n  = 56) whilst those at another hospital were selected for the ‘test set’ ( n  = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature. Results A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p  = 0.0003]. Conclusions This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-021-01411-z</identifier><identifier>PMID: 33972745</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1536/1665/3016 ; 631/67/1665/3016 ; Aged ; Biomedical and Life Sciences ; Biomedicine ; Biopsy ; Cancer Research ; Carcinogenesis ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Clinical outcomes ; Drug Resistance ; Dysplasia ; Epidemiology ; Female ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genetic transformation ; Humans ; Male ; Middle Aged ; Molecular Medicine ; Mouth Neoplasms - genetics ; Mouth Neoplasms - pathology ; Oncology ; Paraffin ; Paraffin Embedding ; Patients ; Prognosis ; Proof of Concept Study ; Risk groups ; Sequence Analysis, RNA ; Survival Analysis ; Tissue Fixation</subject><ispartof>British journal of cancer, 2021-08, Vol.125 (3), p.413-421</ispartof><rights>The Author(s), under exclusive licence to Cancer Research UK 2021</rights><rights>2021. The Author(s), under exclusive licence to Cancer Research UK.</rights><rights>The Author(s), under exclusive licence to Cancer Research UK 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8c3f3be083a581e281ccf8a79ec88432ee24e59fca0c1f9a23b309b09df81a643</citedby><cites>FETCH-LOGICAL-c474t-8c3f3be083a581e281ccf8a79ec88432ee24e59fca0c1f9a23b309b09df81a643</cites><orcidid>0000-0003-3973-6501 ; 0000-0001-6685-5480 ; 0000-0003-3729-5693 ; 0000-0003-4491-6865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329212/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329212/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33972745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sathasivam, Hans Prakash</creatorcontrib><creatorcontrib>Kist, Ralf</creatorcontrib><creatorcontrib>Sloan, Philip</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Nugent, Michael</creatorcontrib><creatorcontrib>Alexander, John</creatorcontrib><creatorcontrib>Haider, Syed</creatorcontrib><creatorcontrib>Robinson, Max</creatorcontrib><title>Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Background This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. Methods Patients with oral epithelial dysplasia at one hospital were selected as the ‘training set’ ( n  = 56) whilst those at another hospital were selected for the ‘test set’ ( n  = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature. Results A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p  = 0.0003]. Conclusions This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.</description><subject>631/67/1536/1665/3016</subject><subject>631/67/1665/3016</subject><subject>Aged</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biopsy</subject><subject>Cancer Research</subject><subject>Carcinogenesis</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Clinical outcomes</subject><subject>Drug Resistance</subject><subject>Dysplasia</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Regulatory Networks</subject><subject>Genetic transformation</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Molecular Medicine</subject><subject>Mouth Neoplasms - genetics</subject><subject>Mouth Neoplasms - pathology</subject><subject>Oncology</subject><subject>Paraffin</subject><subject>Paraffin Embedding</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Proof of Concept Study</subject><subject>Risk groups</subject><subject>Sequence Analysis, RNA</subject><subject>Survival Analysis</subject><subject>Tissue Fixation</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuFTEMhiMEoqeFF2CBIrFOyWWmSTZIqCoXqRIsYB1lMp45qTLJkGQqnT49oacU2LCyLf_-bOtH6BWj54wK9bZ0rGMXhHJGaMsYuXuCdqwXnDDF5VO0o5RKQjWnJ-i0lJtWaqrkc3QihJZcdv0O3X7NMHpXfZxx3QN2wUfvbMBpqy4tgNOEU271mirE6m0IB7zY4OdoY8WjLymPkAveyj0i21hc9mtNi3dksAVGvKQAbgs249XWfQppPrxAzyYbCrx8iGfo-4erb5efyPWXj58v318T18muEuXEJAagStheMeCKOTcpKzU4pTrBAXgHvZ6cpY5N2nIxCKoHqsdJMXvRiTP07shdt2GB0bUX2jNmzX6x-WCS9ebfTvR7M6dbowTXnPEGePMAyOnHBqWam7Tl2G42vO-loD2Tsqn4UeVyKiXD9LiBUfPLK3P0yjSvzL1X5q4Nvf77tseR3-Y0gTgKSmvFGfKf3f_B_gTnvaSm</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Sathasivam, Hans Prakash</creator><creator>Kist, Ralf</creator><creator>Sloan, Philip</creator><creator>Thomson, Peter</creator><creator>Nugent, Michael</creator><creator>Alexander, John</creator><creator>Haider, Syed</creator><creator>Robinson, Max</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3973-6501</orcidid><orcidid>https://orcid.org/0000-0001-6685-5480</orcidid><orcidid>https://orcid.org/0000-0003-3729-5693</orcidid><orcidid>https://orcid.org/0000-0003-4491-6865</orcidid></search><sort><creationdate>20210803</creationdate><title>Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology</title><author>Sathasivam, Hans Prakash ; Kist, Ralf ; Sloan, Philip ; Thomson, Peter ; Nugent, Michael ; Alexander, John ; Haider, Syed ; Robinson, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8c3f3be083a581e281ccf8a79ec88432ee24e59fca0c1f9a23b309b09df81a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/67/1536/1665/3016</topic><topic>631/67/1665/3016</topic><topic>Aged</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biopsy</topic><topic>Cancer Research</topic><topic>Carcinogenesis</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Clinical outcomes</topic><topic>Drug Resistance</topic><topic>Dysplasia</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Regulatory Networks</topic><topic>Genetic transformation</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Molecular Medicine</topic><topic>Mouth Neoplasms - genetics</topic><topic>Mouth Neoplasms - pathology</topic><topic>Oncology</topic><topic>Paraffin</topic><topic>Paraffin Embedding</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Proof of Concept Study</topic><topic>Risk groups</topic><topic>Sequence Analysis, RNA</topic><topic>Survival Analysis</topic><topic>Tissue Fixation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathasivam, Hans Prakash</creatorcontrib><creatorcontrib>Kist, Ralf</creatorcontrib><creatorcontrib>Sloan, Philip</creatorcontrib><creatorcontrib>Thomson, Peter</creatorcontrib><creatorcontrib>Nugent, Michael</creatorcontrib><creatorcontrib>Alexander, John</creatorcontrib><creatorcontrib>Haider, Syed</creatorcontrib><creatorcontrib>Robinson, Max</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathasivam, Hans Prakash</au><au>Kist, Ralf</au><au>Sloan, Philip</au><au>Thomson, Peter</au><au>Nugent, Michael</au><au>Alexander, John</au><au>Haider, Syed</au><au>Robinson, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>125</volume><issue>3</issue><spage>413</spage><epage>421</epage><pages>413-421</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Background This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. Methods Patients with oral epithelial dysplasia at one hospital were selected as the ‘training set’ ( n  = 56) whilst those at another hospital were selected for the ‘test set’ ( n  = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature. Results A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p  = 0.0003]. Conclusions This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33972745</pmid><doi>10.1038/s41416-021-01411-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3973-6501</orcidid><orcidid>https://orcid.org/0000-0001-6685-5480</orcidid><orcidid>https://orcid.org/0000-0003-3729-5693</orcidid><orcidid>https://orcid.org/0000-0003-4491-6865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0920
ispartof British journal of cancer, 2021-08, Vol.125 (3), p.413-421
issn 0007-0920
1532-1827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8329212
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 631/67/1536/1665/3016
631/67/1665/3016
Aged
Biomedical and Life Sciences
Biomedicine
Biopsy
Cancer Research
Carcinogenesis
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - pathology
Clinical outcomes
Drug Resistance
Dysplasia
Epidemiology
Female
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Genetic transformation
Humans
Male
Middle Aged
Molecular Medicine
Mouth Neoplasms - genetics
Mouth Neoplasms - pathology
Oncology
Paraffin
Paraffin Embedding
Patients
Prognosis
Proof of Concept Study
Risk groups
Sequence Analysis, RNA
Survival Analysis
Tissue Fixation
title Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20clinical%20outcome%20of%20oral%20potentially%20malignant%20disorders%20using%20transcriptomic-based%20molecular%20pathology&rft.jtitle=British%20journal%20of%20cancer&rft.au=Sathasivam,%20Hans%20Prakash&rft.date=2021-08-03&rft.volume=125&rft.issue=3&rft.spage=413&rft.epage=421&rft.pages=413-421&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-021-01411-z&rft_dat=%3Cproquest_pubme%3E2557305177%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557305177&rft_id=info:pmid/33972745&rfr_iscdi=true