The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis
Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC a...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2021-08, Vol.125 (3), p.390-401 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 3 |
container_start_page | 390 |
container_title | British journal of cancer |
container_volume | 125 |
creator | Liang, Juyong Jin, Zhijian Kuang, Jie Feng, Haoran Zhao, Qiwu Yang, Zheyu Zhan, Ling Shen, Baiyong Yan, Jiqi Cai, Wei Cheng, Xi Qiu, Weihua |
description | Background
Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated.
Methods
Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro.
Results
Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR
via
a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network.
Conclusions
The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC. |
doi_str_mv | 10.1038/s41416-021-01340-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8328993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557303913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</originalsourceid><addsrcrecordid>eNp9kVFrFDEUhYNY7Fr9Az5IwOdoMpnZSV4EWdoqLBSkgm_hTnJnNu00GZPZ0v4Lf7LZ3VrrS59CuOc79x4OIe8E_yi4VJ9yLWqxZLwSjAtZc3b3gixEIysmVNW-JAvOecu4rvgxeZ3zVflqrtpX5LiIldJKL8jvyw3SFEeksacQxjj74Dt2g87DjI6enp99p90Y7TU4pD5QoFPMfva3SHtE14G9pmOM045f_VythWCFYXsu-yHAOPow7MkA0wh59pbOm_sUvaMWgsVUJoOPAwbMPr8hRz2MGd8-vCfkx9np5eorW1-cf1t9WTNbt_XMQKPtnO7Vsrdgrazr1krblIidhKXGSqNziKAUuLbVTVs7kJrXfV-V4IDyhHw--E7brqS1GOYEo5mSv4F0byJ48_8k-I0Z4q1RsjhoWQw-PBik-GuLeTZXcZtK3myqpmkll1rsVNVBZVPMOWH_uEFws2vRHFo0pUWzb9HcFej909sekb-1FYE8CHIZhQHTv93P2P4B596rOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557303913</pqid></control><display><type>article</type><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</creator><creatorcontrib>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</creatorcontrib><description>Background
Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated.
Methods
Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro.
Results
Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR
via
a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network.
Conclusions
The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-021-01340-x</identifier><identifier>PMID: 34088989</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/555 ; 631/67/327 ; 692/4028/67/2328 ; AKT protein ; Angiogenesis ; Animals ; Antiangiogenic agents ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Hypoxia - drug effects ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cell viability ; Chemokine CXCL11 - metabolism ; Chorioallantoic membrane ; CXCL11 protein ; Drug Resistance ; Endothelial cells ; Endothelium ; Epidemiology ; Epidermal Growth Factor - metabolism ; Epidermal growth factor receptors ; ErbB Receptors - metabolism ; Feedback ; Feedback, Physiological - drug effects ; Female ; Fibroblast growth factor receptors ; Gene Expression Regulation, Neoplastic - drug effects ; Homology ; Humans ; Hypoxia ; Indoles - administration & dosage ; Indoles - pharmacology ; Mice ; Molecular Medicine ; Oncology ; Protein Kinase Inhibitors - administration & dosage ; Protein Kinase Inhibitors - pharmacology ; Quinolines - administration & dosage ; Quinolines - pharmacology ; Signal transduction ; Signal Transduction - drug effects ; Thyroid cancer ; Thyroid Carcinoma, Anaplastic - drug therapy ; Thyroid Carcinoma, Anaplastic - metabolism ; Thyroid Neoplasms - drug therapy ; Thyroid Neoplasms - metabolism ; Tissue Array Analysis ; TOR protein ; Vascular endothelial growth factor receptors ; Xenograft Model Antitumor Assays</subject><ispartof>British journal of cancer, 2021-08, Vol.125 (3), p.390-401</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</citedby><cites>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</cites><orcidid>0000-0002-9636-2000 ; 0000-0003-0063-3847 ; 0000-0001-7336-732X ; 0000-0002-4765-3370 ; 0000-0002-0009-8189 ; 0000-0002-0370-3698 ; 0000-0001-7650-5943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328993/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328993/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34088989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Juyong</creatorcontrib><creatorcontrib>Jin, Zhijian</creatorcontrib><creatorcontrib>Kuang, Jie</creatorcontrib><creatorcontrib>Feng, Haoran</creatorcontrib><creatorcontrib>Zhao, Qiwu</creatorcontrib><creatorcontrib>Yang, Zheyu</creatorcontrib><creatorcontrib>Zhan, Ling</creatorcontrib><creatorcontrib>Shen, Baiyong</creatorcontrib><creatorcontrib>Yan, Jiqi</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Cheng, Xi</creatorcontrib><creatorcontrib>Qiu, Weihua</creatorcontrib><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Background
Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated.
Methods
Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro.
Results
Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR
via
a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network.
Conclusions
The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</description><subject>631/154/555</subject><subject>631/67/327</subject><subject>692/4028/67/2328</subject><subject>AKT protein</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antiangiogenic agents</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Chemokine CXCL11 - metabolism</subject><subject>Chorioallantoic membrane</subject><subject>CXCL11 protein</subject><subject>Drug Resistance</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Epidemiology</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - metabolism</subject><subject>Feedback</subject><subject>Feedback, Physiological - drug effects</subject><subject>Female</subject><subject>Fibroblast growth factor receptors</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Homology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Indoles - administration & dosage</subject><subject>Indoles - pharmacology</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Oncology</subject><subject>Protein Kinase Inhibitors - administration & dosage</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Quinolines - administration & dosage</subject><subject>Quinolines - pharmacology</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Thyroid cancer</subject><subject>Thyroid Carcinoma, Anaplastic - drug therapy</subject><subject>Thyroid Carcinoma, Anaplastic - metabolism</subject><subject>Thyroid Neoplasms - drug therapy</subject><subject>Thyroid Neoplasms - metabolism</subject><subject>Tissue Array Analysis</subject><subject>TOR protein</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFrFDEUhYNY7Fr9Az5IwOdoMpnZSV4EWdoqLBSkgm_hTnJnNu00GZPZ0v4Lf7LZ3VrrS59CuOc79x4OIe8E_yi4VJ9yLWqxZLwSjAtZc3b3gixEIysmVNW-JAvOecu4rvgxeZ3zVflqrtpX5LiIldJKL8jvyw3SFEeksacQxjj74Dt2g87DjI6enp99p90Y7TU4pD5QoFPMfva3SHtE14G9pmOM045f_VythWCFYXsu-yHAOPow7MkA0wh59pbOm_sUvaMWgsVUJoOPAwbMPr8hRz2MGd8-vCfkx9np5eorW1-cf1t9WTNbt_XMQKPtnO7Vsrdgrazr1krblIidhKXGSqNziKAUuLbVTVs7kJrXfV-V4IDyhHw--E7brqS1GOYEo5mSv4F0byJ48_8k-I0Z4q1RsjhoWQw-PBik-GuLeTZXcZtK3myqpmkll1rsVNVBZVPMOWH_uEFws2vRHFo0pUWzb9HcFej909sekb-1FYE8CHIZhQHTv93P2P4B596rOQ</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Liang, Juyong</creator><creator>Jin, Zhijian</creator><creator>Kuang, Jie</creator><creator>Feng, Haoran</creator><creator>Zhao, Qiwu</creator><creator>Yang, Zheyu</creator><creator>Zhan, Ling</creator><creator>Shen, Baiyong</creator><creator>Yan, Jiqi</creator><creator>Cai, Wei</creator><creator>Cheng, Xi</creator><creator>Qiu, Weihua</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9636-2000</orcidid><orcidid>https://orcid.org/0000-0003-0063-3847</orcidid><orcidid>https://orcid.org/0000-0001-7336-732X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3370</orcidid><orcidid>https://orcid.org/0000-0002-0009-8189</orcidid><orcidid>https://orcid.org/0000-0002-0370-3698</orcidid><orcidid>https://orcid.org/0000-0001-7650-5943</orcidid></search><sort><creationdate>20210803</creationdate><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><author>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/154/555</topic><topic>631/67/327</topic><topic>692/4028/67/2328</topic><topic>AKT protein</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antiangiogenic agents</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Chemokine CXCL11 - metabolism</topic><topic>Chorioallantoic membrane</topic><topic>CXCL11 protein</topic><topic>Drug Resistance</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Epidemiology</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - metabolism</topic><topic>Feedback</topic><topic>Feedback, Physiological - drug effects</topic><topic>Female</topic><topic>Fibroblast growth factor receptors</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Homology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Indoles - administration & dosage</topic><topic>Indoles - pharmacology</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Oncology</topic><topic>Protein Kinase Inhibitors - administration & dosage</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Quinolines - administration & dosage</topic><topic>Quinolines - pharmacology</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Thyroid cancer</topic><topic>Thyroid Carcinoma, Anaplastic - drug therapy</topic><topic>Thyroid Carcinoma, Anaplastic - metabolism</topic><topic>Thyroid Neoplasms - drug therapy</topic><topic>Thyroid Neoplasms - metabolism</topic><topic>Tissue Array Analysis</topic><topic>TOR protein</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Juyong</creatorcontrib><creatorcontrib>Jin, Zhijian</creatorcontrib><creatorcontrib>Kuang, Jie</creatorcontrib><creatorcontrib>Feng, Haoran</creatorcontrib><creatorcontrib>Zhao, Qiwu</creatorcontrib><creatorcontrib>Yang, Zheyu</creatorcontrib><creatorcontrib>Zhan, Ling</creatorcontrib><creatorcontrib>Shen, Baiyong</creatorcontrib><creatorcontrib>Yan, Jiqi</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Cheng, Xi</creatorcontrib><creatorcontrib>Qiu, Weihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Juyong</au><au>Jin, Zhijian</au><au>Kuang, Jie</au><au>Feng, Haoran</au><au>Zhao, Qiwu</au><au>Yang, Zheyu</au><au>Zhan, Ling</au><au>Shen, Baiyong</au><au>Yan, Jiqi</au><au>Cai, Wei</au><au>Cheng, Xi</au><au>Qiu, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>125</volume><issue>3</issue><spage>390</spage><epage>401</epage><pages>390-401</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Background
Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated.
Methods
Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro.
Results
Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR
via
a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network.
Conclusions
The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34088989</pmid><doi>10.1038/s41416-021-01340-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9636-2000</orcidid><orcidid>https://orcid.org/0000-0003-0063-3847</orcidid><orcidid>https://orcid.org/0000-0001-7336-732X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3370</orcidid><orcidid>https://orcid.org/0000-0002-0009-8189</orcidid><orcidid>https://orcid.org/0000-0002-0370-3698</orcidid><orcidid>https://orcid.org/0000-0001-7650-5943</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0920 |
ispartof | British journal of cancer, 2021-08, Vol.125 (3), p.390-401 |
issn | 0007-0920 1532-1827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8328993 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | 631/154/555 631/67/327 692/4028/67/2328 AKT protein Angiogenesis Animals Antiangiogenic agents Biomedical and Life Sciences Biomedicine Cancer Research Cell Hypoxia - drug effects Cell Line, Tumor Cell Movement - drug effects Cell Proliferation - drug effects Cell Survival - drug effects Cell viability Chemokine CXCL11 - metabolism Chorioallantoic membrane CXCL11 protein Drug Resistance Endothelial cells Endothelium Epidemiology Epidermal Growth Factor - metabolism Epidermal growth factor receptors ErbB Receptors - metabolism Feedback Feedback, Physiological - drug effects Female Fibroblast growth factor receptors Gene Expression Regulation, Neoplastic - drug effects Homology Humans Hypoxia Indoles - administration & dosage Indoles - pharmacology Mice Molecular Medicine Oncology Protein Kinase Inhibitors - administration & dosage Protein Kinase Inhibitors - pharmacology Quinolines - administration & dosage Quinolines - pharmacology Signal transduction Signal Transduction - drug effects Thyroid cancer Thyroid Carcinoma, Anaplastic - drug therapy Thyroid Carcinoma, Anaplastic - metabolism Thyroid Neoplasms - drug therapy Thyroid Neoplasms - metabolism Tissue Array Analysis TOR protein Vascular endothelial growth factor receptors Xenograft Model Antitumor Assays |
title | The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20anlotinib-mediated%20EGFR%20blockade%20in%20a%20positive%20feedback%20loop%20of%20CXCL11-EGF-EGFR%20signalling%20in%20anaplastic%20thyroid%20cancer%20angiogenesis&rft.jtitle=British%20journal%20of%20cancer&rft.au=Liang,%20Juyong&rft.date=2021-08-03&rft.volume=125&rft.issue=3&rft.spage=390&rft.epage=401&rft.pages=390-401&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-021-01340-x&rft_dat=%3Cproquest_pubme%3E2557303913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557303913&rft_id=info:pmid/34088989&rfr_iscdi=true |