The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis

Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of cancer 2021-08, Vol.125 (3), p.390-401
Hauptverfasser: Liang, Juyong, Jin, Zhijian, Kuang, Jie, Feng, Haoran, Zhao, Qiwu, Yang, Zheyu, Zhan, Ling, Shen, Baiyong, Yan, Jiqi, Cai, Wei, Cheng, Xi, Qiu, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 3
container_start_page 390
container_title British journal of cancer
container_volume 125
creator Liang, Juyong
Jin, Zhijian
Kuang, Jie
Feng, Haoran
Zhao, Qiwu
Yang, Zheyu
Zhan, Ling
Shen, Baiyong
Yan, Jiqi
Cai, Wei
Cheng, Xi
Qiu, Weihua
description Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. Methods Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. Results Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. Conclusions The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.
doi_str_mv 10.1038/s41416-021-01340-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8328993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557303913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</originalsourceid><addsrcrecordid>eNp9kVFrFDEUhYNY7Fr9Az5IwOdoMpnZSV4EWdoqLBSkgm_hTnJnNu00GZPZ0v4Lf7LZ3VrrS59CuOc79x4OIe8E_yi4VJ9yLWqxZLwSjAtZc3b3gixEIysmVNW-JAvOecu4rvgxeZ3zVflqrtpX5LiIldJKL8jvyw3SFEeksacQxjj74Dt2g87DjI6enp99p90Y7TU4pD5QoFPMfva3SHtE14G9pmOM045f_VythWCFYXsu-yHAOPow7MkA0wh59pbOm_sUvaMWgsVUJoOPAwbMPr8hRz2MGd8-vCfkx9np5eorW1-cf1t9WTNbt_XMQKPtnO7Vsrdgrazr1krblIidhKXGSqNziKAUuLbVTVs7kJrXfV-V4IDyhHw--E7brqS1GOYEo5mSv4F0byJ48_8k-I0Z4q1RsjhoWQw-PBik-GuLeTZXcZtK3myqpmkll1rsVNVBZVPMOWH_uEFws2vRHFo0pUWzb9HcFej909sekb-1FYE8CHIZhQHTv93P2P4B596rOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557303913</pqid></control><display><type>article</type><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</creator><creatorcontrib>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</creatorcontrib><description>Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. Methods Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. Results Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. Conclusions The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-021-01340-x</identifier><identifier>PMID: 34088989</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/555 ; 631/67/327 ; 692/4028/67/2328 ; AKT protein ; Angiogenesis ; Animals ; Antiangiogenic agents ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Hypoxia - drug effects ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cell viability ; Chemokine CXCL11 - metabolism ; Chorioallantoic membrane ; CXCL11 protein ; Drug Resistance ; Endothelial cells ; Endothelium ; Epidemiology ; Epidermal Growth Factor - metabolism ; Epidermal growth factor receptors ; ErbB Receptors - metabolism ; Feedback ; Feedback, Physiological - drug effects ; Female ; Fibroblast growth factor receptors ; Gene Expression Regulation, Neoplastic - drug effects ; Homology ; Humans ; Hypoxia ; Indoles - administration &amp; dosage ; Indoles - pharmacology ; Mice ; Molecular Medicine ; Oncology ; Protein Kinase Inhibitors - administration &amp; dosage ; Protein Kinase Inhibitors - pharmacology ; Quinolines - administration &amp; dosage ; Quinolines - pharmacology ; Signal transduction ; Signal Transduction - drug effects ; Thyroid cancer ; Thyroid Carcinoma, Anaplastic - drug therapy ; Thyroid Carcinoma, Anaplastic - metabolism ; Thyroid Neoplasms - drug therapy ; Thyroid Neoplasms - metabolism ; Tissue Array Analysis ; TOR protein ; Vascular endothelial growth factor receptors ; Xenograft Model Antitumor Assays</subject><ispartof>British journal of cancer, 2021-08, Vol.125 (3), p.390-401</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</citedby><cites>FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</cites><orcidid>0000-0002-9636-2000 ; 0000-0003-0063-3847 ; 0000-0001-7336-732X ; 0000-0002-4765-3370 ; 0000-0002-0009-8189 ; 0000-0002-0370-3698 ; 0000-0001-7650-5943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328993/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328993/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34088989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Juyong</creatorcontrib><creatorcontrib>Jin, Zhijian</creatorcontrib><creatorcontrib>Kuang, Jie</creatorcontrib><creatorcontrib>Feng, Haoran</creatorcontrib><creatorcontrib>Zhao, Qiwu</creatorcontrib><creatorcontrib>Yang, Zheyu</creatorcontrib><creatorcontrib>Zhan, Ling</creatorcontrib><creatorcontrib>Shen, Baiyong</creatorcontrib><creatorcontrib>Yan, Jiqi</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Cheng, Xi</creatorcontrib><creatorcontrib>Qiu, Weihua</creatorcontrib><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. Methods Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. Results Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. Conclusions The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</description><subject>631/154/555</subject><subject>631/67/327</subject><subject>692/4028/67/2328</subject><subject>AKT protein</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antiangiogenic agents</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Chemokine CXCL11 - metabolism</subject><subject>Chorioallantoic membrane</subject><subject>CXCL11 protein</subject><subject>Drug Resistance</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Epidemiology</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - metabolism</subject><subject>Feedback</subject><subject>Feedback, Physiological - drug effects</subject><subject>Female</subject><subject>Fibroblast growth factor receptors</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Homology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Indoles - administration &amp; dosage</subject><subject>Indoles - pharmacology</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Oncology</subject><subject>Protein Kinase Inhibitors - administration &amp; dosage</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Quinolines - administration &amp; dosage</subject><subject>Quinolines - pharmacology</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Thyroid cancer</subject><subject>Thyroid Carcinoma, Anaplastic - drug therapy</subject><subject>Thyroid Carcinoma, Anaplastic - metabolism</subject><subject>Thyroid Neoplasms - drug therapy</subject><subject>Thyroid Neoplasms - metabolism</subject><subject>Tissue Array Analysis</subject><subject>TOR protein</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFrFDEUhYNY7Fr9Az5IwOdoMpnZSV4EWdoqLBSkgm_hTnJnNu00GZPZ0v4Lf7LZ3VrrS59CuOc79x4OIe8E_yi4VJ9yLWqxZLwSjAtZc3b3gixEIysmVNW-JAvOecu4rvgxeZ3zVflqrtpX5LiIldJKL8jvyw3SFEeksacQxjj74Dt2g87DjI6enp99p90Y7TU4pD5QoFPMfva3SHtE14G9pmOM045f_VythWCFYXsu-yHAOPow7MkA0wh59pbOm_sUvaMWgsVUJoOPAwbMPr8hRz2MGd8-vCfkx9np5eorW1-cf1t9WTNbt_XMQKPtnO7Vsrdgrazr1krblIidhKXGSqNziKAUuLbVTVs7kJrXfV-V4IDyhHw--E7brqS1GOYEo5mSv4F0byJ48_8k-I0Z4q1RsjhoWQw-PBik-GuLeTZXcZtK3myqpmkll1rsVNVBZVPMOWH_uEFws2vRHFo0pUWzb9HcFej909sekb-1FYE8CHIZhQHTv93P2P4B596rOQ</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Liang, Juyong</creator><creator>Jin, Zhijian</creator><creator>Kuang, Jie</creator><creator>Feng, Haoran</creator><creator>Zhao, Qiwu</creator><creator>Yang, Zheyu</creator><creator>Zhan, Ling</creator><creator>Shen, Baiyong</creator><creator>Yan, Jiqi</creator><creator>Cai, Wei</creator><creator>Cheng, Xi</creator><creator>Qiu, Weihua</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9636-2000</orcidid><orcidid>https://orcid.org/0000-0003-0063-3847</orcidid><orcidid>https://orcid.org/0000-0001-7336-732X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3370</orcidid><orcidid>https://orcid.org/0000-0002-0009-8189</orcidid><orcidid>https://orcid.org/0000-0002-0370-3698</orcidid><orcidid>https://orcid.org/0000-0001-7650-5943</orcidid></search><sort><creationdate>20210803</creationdate><title>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</title><author>Liang, Juyong ; Jin, Zhijian ; Kuang, Jie ; Feng, Haoran ; Zhao, Qiwu ; Yang, Zheyu ; Zhan, Ling ; Shen, Baiyong ; Yan, Jiqi ; Cai, Wei ; Cheng, Xi ; Qiu, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a9ecbd9f86fcacc3447c3c5000b3a69e29eddeea88ad779574da3904ff2898ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/154/555</topic><topic>631/67/327</topic><topic>692/4028/67/2328</topic><topic>AKT protein</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antiangiogenic agents</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Chemokine CXCL11 - metabolism</topic><topic>Chorioallantoic membrane</topic><topic>CXCL11 protein</topic><topic>Drug Resistance</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Epidemiology</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - metabolism</topic><topic>Feedback</topic><topic>Feedback, Physiological - drug effects</topic><topic>Female</topic><topic>Fibroblast growth factor receptors</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Homology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Indoles - administration &amp; dosage</topic><topic>Indoles - pharmacology</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Oncology</topic><topic>Protein Kinase Inhibitors - administration &amp; dosage</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Quinolines - administration &amp; dosage</topic><topic>Quinolines - pharmacology</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Thyroid cancer</topic><topic>Thyroid Carcinoma, Anaplastic - drug therapy</topic><topic>Thyroid Carcinoma, Anaplastic - metabolism</topic><topic>Thyroid Neoplasms - drug therapy</topic><topic>Thyroid Neoplasms - metabolism</topic><topic>Tissue Array Analysis</topic><topic>TOR protein</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Juyong</creatorcontrib><creatorcontrib>Jin, Zhijian</creatorcontrib><creatorcontrib>Kuang, Jie</creatorcontrib><creatorcontrib>Feng, Haoran</creatorcontrib><creatorcontrib>Zhao, Qiwu</creatorcontrib><creatorcontrib>Yang, Zheyu</creatorcontrib><creatorcontrib>Zhan, Ling</creatorcontrib><creatorcontrib>Shen, Baiyong</creatorcontrib><creatorcontrib>Yan, Jiqi</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Cheng, Xi</creatorcontrib><creatorcontrib>Qiu, Weihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Juyong</au><au>Jin, Zhijian</au><au>Kuang, Jie</au><au>Feng, Haoran</au><au>Zhao, Qiwu</au><au>Yang, Zheyu</au><au>Zhan, Ling</au><au>Shen, Baiyong</au><au>Yan, Jiqi</au><au>Cai, Wei</au><au>Cheng, Xi</au><au>Qiu, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2021-08-03</date><risdate>2021</risdate><volume>125</volume><issue>3</issue><spage>390</spage><epage>401</epage><pages>390-401</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Background Hypoxia-induced angiogenesis functions importantly in anaplastic thyroid cancer (ATC) progression. However, the therapeutic potential of broad-spectrum anti-angiogenic agent remains undefined. Anlotinib conventionally targets VEGFR, FGFR and PDGFR. Here, a novel role of anlotinib on ATC angiogenesis was illustrated. Methods Molecular expressions were established via tissue microarray. Multiple assays (tubule formation, 3D sprouting and chicken chorioallantoic membrane model) were used for angiogenic evaluation. Panels of molecular screening were achieved by antibody and PCR arrays. The loop binding motif of EGFR for homology modelling was prepared using Maestro. Results Anlotinib could dose- and time-dependently inhibit cell viability under normoxia and hypoxia and could repress hypoxia-activated angiogenesis more efficiently in vitro and in vivo. CXCL11 and phospho-EGFR were hypoxia-upregulated with a positive correlation. The cancer–endothelium crosstalk could be mediated by the positive CXCL11-EGF-EGFR feedback loop, which could be blocked by anlotinib directly targeting EGFR via a dual mechanism by simultaneous inhibitory effects on cancer and endothelial cells. The AKT-mTOR pathway was involved in this regulatory network. Conclusions The newly identified CXCL11-EGF-EGFR signalling provided mechanistic insight into the interaction between cancer and endothelial cells under hypoxia, and EGFR was a novel target. Anlotinib may be the encouraging therapeutic candidate in ATC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34088989</pmid><doi>10.1038/s41416-021-01340-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9636-2000</orcidid><orcidid>https://orcid.org/0000-0003-0063-3847</orcidid><orcidid>https://orcid.org/0000-0001-7336-732X</orcidid><orcidid>https://orcid.org/0000-0002-4765-3370</orcidid><orcidid>https://orcid.org/0000-0002-0009-8189</orcidid><orcidid>https://orcid.org/0000-0002-0370-3698</orcidid><orcidid>https://orcid.org/0000-0001-7650-5943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0920
ispartof British journal of cancer, 2021-08, Vol.125 (3), p.390-401
issn 0007-0920
1532-1827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8328993
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects 631/154/555
631/67/327
692/4028/67/2328
AKT protein
Angiogenesis
Animals
Antiangiogenic agents
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Hypoxia - drug effects
Cell Line, Tumor
Cell Movement - drug effects
Cell Proliferation - drug effects
Cell Survival - drug effects
Cell viability
Chemokine CXCL11 - metabolism
Chorioallantoic membrane
CXCL11 protein
Drug Resistance
Endothelial cells
Endothelium
Epidemiology
Epidermal Growth Factor - metabolism
Epidermal growth factor receptors
ErbB Receptors - metabolism
Feedback
Feedback, Physiological - drug effects
Female
Fibroblast growth factor receptors
Gene Expression Regulation, Neoplastic - drug effects
Homology
Humans
Hypoxia
Indoles - administration & dosage
Indoles - pharmacology
Mice
Molecular Medicine
Oncology
Protein Kinase Inhibitors - administration & dosage
Protein Kinase Inhibitors - pharmacology
Quinolines - administration & dosage
Quinolines - pharmacology
Signal transduction
Signal Transduction - drug effects
Thyroid cancer
Thyroid Carcinoma, Anaplastic - drug therapy
Thyroid Carcinoma, Anaplastic - metabolism
Thyroid Neoplasms - drug therapy
Thyroid Neoplasms - metabolism
Tissue Array Analysis
TOR protein
Vascular endothelial growth factor receptors
Xenograft Model Antitumor Assays
title The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20anlotinib-mediated%20EGFR%20blockade%20in%20a%20positive%20feedback%20loop%20of%20CXCL11-EGF-EGFR%20signalling%20in%20anaplastic%20thyroid%20cancer%20angiogenesis&rft.jtitle=British%20journal%20of%20cancer&rft.au=Liang,%20Juyong&rft.date=2021-08-03&rft.volume=125&rft.issue=3&rft.spage=390&rft.epage=401&rft.pages=390-401&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-021-01340-x&rft_dat=%3Cproquest_pubme%3E2557303913%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557303913&rft_id=info:pmid/34088989&rfr_iscdi=true