Understanding the structural diversity of chitins as a versatile biomaterial

Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2021-09, Vol.379 (2206), p.20200331
Hauptverfasser: Hou, Jiaxin, Aydemir, Berk Emre, Dumanli, Ahu Gümrah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2206
container_start_page 20200331
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 379
creator Hou, Jiaxin
Aydemir, Berk Emre
Dumanli, Ahu Gümrah
description Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
doi_str_mv 10.1098/rsta.2020.0331
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8326827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34334022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-267d5d2f1367cb91f35b6d24d084baf2c9289700bac7aac974be6e061ce5676c3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk5vvZT8gdaTpE3aG0GGXzDwxoF3IU3SLdK1I8kG-_emTIfCgXM4H-95eRC6JZATqKt7H6LKKVDIgTFyhqakECSjNafnqWa8yEpgnxN0FcIXACG8pJdowgrGCqB0ihbL3thRpDeuX-G4tjhEv9Nx51WHjdunoYsHPLRYr110fcAqBR77KrrO4sYNGxWtd6q7Rhet6oK9-ckztHx--pi_Zov3l7f54yLTHMqYUS5MaWib7And1KRlZcMNLQxURaNaqmta1QKgUVoopWtRNJZb4ETbkguu2Qw9HHW3u2ZjjbZ9TG7l1ruN8gc5KCf_T3q3lqthLytGeUVFEsiPAtoPIXjbnm4JyJGrHJHIkascuaaDu78fT-u_INk3FMd3Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding the structural diversity of chitins as a versatile biomaterial</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hou, Jiaxin ; Aydemir, Berk Emre ; Dumanli, Ahu Gümrah</creator><creatorcontrib>Hou, Jiaxin ; Aydemir, Berk Emre ; Dumanli, Ahu Gümrah</creatorcontrib><description>Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2020.0331</identifier><identifier>PMID: 34334022</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Biocompatible Materials ; Chitin ; Molecular Conformation ; Opinion Piece</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2021-09, Vol.379 (2206), p.20200331</ispartof><rights>2021 The Authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-267d5d2f1367cb91f35b6d24d084baf2c9289700bac7aac974be6e061ce5676c3</citedby><cites>FETCH-LOGICAL-c605t-267d5d2f1367cb91f35b6d24d084baf2c9289700bac7aac974be6e061ce5676c3</cites><orcidid>0000-0002-7106-4875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34334022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Jiaxin</creatorcontrib><creatorcontrib>Aydemir, Berk Emre</creatorcontrib><creatorcontrib>Dumanli, Ahu Gümrah</creatorcontrib><title>Understanding the structural diversity of chitins as a versatile biomaterial</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.</description><subject>Biocompatible Materials</subject><subject>Chitin</subject><subject>Molecular Conformation</subject><subject>Opinion Piece</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1LwzAUhoMobk5vvZT8gdaTpE3aG0GGXzDwxoF3IU3SLdK1I8kG-_emTIfCgXM4H-95eRC6JZATqKt7H6LKKVDIgTFyhqakECSjNafnqWa8yEpgnxN0FcIXACG8pJdowgrGCqB0ihbL3thRpDeuX-G4tjhEv9Nx51WHjdunoYsHPLRYr110fcAqBR77KrrO4sYNGxWtd6q7Rhet6oK9-ckztHx--pi_Zov3l7f54yLTHMqYUS5MaWib7And1KRlZcMNLQxURaNaqmta1QKgUVoopWtRNJZb4ETbkguu2Qw9HHW3u2ZjjbZ9TG7l1ruN8gc5KCf_T3q3lqthLytGeUVFEsiPAtoPIXjbnm4JyJGrHJHIkascuaaDu78fT-u_INk3FMd3Ng</recordid><startdate>20210920</startdate><enddate>20210920</enddate><creator>Hou, Jiaxin</creator><creator>Aydemir, Berk Emre</creator><creator>Dumanli, Ahu Gümrah</creator><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7106-4875</orcidid></search><sort><creationdate>20210920</creationdate><title>Understanding the structural diversity of chitins as a versatile biomaterial</title><author>Hou, Jiaxin ; Aydemir, Berk Emre ; Dumanli, Ahu Gümrah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-267d5d2f1367cb91f35b6d24d084baf2c9289700bac7aac974be6e061ce5676c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatible Materials</topic><topic>Chitin</topic><topic>Molecular Conformation</topic><topic>Opinion Piece</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jiaxin</creatorcontrib><creatorcontrib>Aydemir, Berk Emre</creatorcontrib><creatorcontrib>Dumanli, Ahu Gümrah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jiaxin</au><au>Aydemir, Berk Emre</au><au>Dumanli, Ahu Gümrah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the structural diversity of chitins as a versatile biomaterial</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2021-09-20</date><risdate>2021</risdate><volume>379</volume><issue>2206</issue><spage>20200331</spage><pages>20200331-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>34334022</pmid><doi>10.1098/rsta.2020.0331</doi><orcidid>https://orcid.org/0000-0002-7106-4875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2021-09, Vol.379 (2206), p.20200331
issn 1364-503X
1471-2962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8326827
source MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biocompatible Materials
Chitin
Molecular Conformation
Opinion Piece
title Understanding the structural diversity of chitins as a versatile biomaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20structural%20diversity%20of%20chitins%20as%20a%20versatile%20biomaterial&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Hou,%20Jiaxin&rft.date=2021-09-20&rft.volume=379&rft.issue=2206&rft.spage=20200331&rft.pages=20200331-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2020.0331&rft_dat=%3Cpubmed_cross%3E34334022%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34334022&rfr_iscdi=true