Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish
ASXL1 is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies, ASXL1 mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexp...
Gespeichert in:
Veröffentlicht in: | Leukemia 2021-08, Vol.35 (8), p.2299-2310 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2310 |
---|---|
container_issue | 8 |
container_start_page | 2299 |
container_title | Leukemia |
container_volume | 35 |
creator | Fang, Xiao Xu, Song’en Zhang, Yiyue Xu, Jin Huang, Zhibin Liu, Wei Wang, Shunqing Yen, Kuangyu Zhang, Wenqing |
description | ASXL1
is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies,
ASXL1
mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that
asxl1
-induced neutrophilic dysplasia was associated with reduced expression of
bmi1a
, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by
asxl1
mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development. |
doi_str_mv | 10.1038/s41375-021-01121-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8324474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670196643</galeid><sourcerecordid>A670196643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-dfa4873d105dceb81750a32fcb1f6eb1f536a724fe8442386fbd436436a1d6663</originalsourceid><addsrcrecordid>eNp9kt2rFCEYxiWKzrb1D3QRA0F0Mye_dW-CZemTA93UtTgzuuvB0U2dQ_XX5zSn025EKAq-v_dRHx4AniJ4iSCRrzJFRLAWYtRChOoq74EVooK3jDF0H6yglKLlG0wvwKOcryGci_whuCCESsIRXoGP2_zNo2bXFpNGF7Rvxqno4mJojiaVKXW5CWYqKR4PzjeDs9YkE4pbGBeaH6ZL2rp8eAweWO2zeXK7r8GXt28-7963V5_efdhtr9qeCVzawWoqBRkQZENvOokEg5pg23fIclMXRrgWmFojKcVEctsNlPA6NRo452QNXi-6x6kbTdUIJWmvjsmNOn1XUTt1XgnuoPbxRkmCKRW0Cry8FUjx62RyUaPLvfFeBxOnrDCVkG6QQPNdz_9Cr-OUqk2VYowzKiA5ofbaG-WCjfXefhZVWy4g2vD6_Epd_oOqYzCj62Mw1tXzs4YXJw0Ho3055Oin2fl8DuIF7FPMORl7ZwaCao6KWqKialTUr6hUL9bg2amNdy2_s1EBsgC5lsLepD9__4_sT4BoyAE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556547036</pqid></control><display><type>article</type><title>Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Fang, Xiao ; Xu, Song’en ; Zhang, Yiyue ; Xu, Jin ; Huang, Zhibin ; Liu, Wei ; Wang, Shunqing ; Yen, Kuangyu ; Zhang, Wenqing</creator><creatorcontrib>Fang, Xiao ; Xu, Song’en ; Zhang, Yiyue ; Xu, Jin ; Huang, Zhibin ; Liu, Wei ; Wang, Shunqing ; Yen, Kuangyu ; Zhang, Wenqing</creatorcontrib><description>ASXL1
is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies,
ASXL1
mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that
asxl1
-induced neutrophilic dysplasia was associated with reduced expression of
bmi1a
, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by
asxl1
mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/s41375-021-01121-8</identifier><identifier>PMID: 33483612</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 14/35 ; 38/39 ; 38/71 ; 38/91 ; 45/90 ; 631/136/232 ; 631/67/1990 ; 64/116 ; 96/63 ; Acute myeloid leukemia ; Animals ; Cancer Research ; Care and treatment ; Cell Differentiation ; Chronic myelomonocytic leukemia ; Critical Care Medicine ; Danio rerio ; Development and progression ; Differentiation ; Dysplasia ; Embryo, Nonmammalian - metabolism ; Embryo, Nonmammalian - pathology ; Embryos ; Frameshift mutation ; Gene expression ; Gene mutations ; Genetic aspects ; Health aspects ; Hematology ; Intensive ; Internal Medicine ; Leukemia ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - metabolism ; Leukemia, Myeloid, Acute - pathology ; Leukemia, Myelomonocytic, Chronic - genetics ; Leukemia, Myelomonocytic, Chronic - metabolism ; Leukemia, Myelomonocytic, Chronic - pathology ; Leukemogenesis ; Leukocytes (neutrophilic) ; Malignancy ; Medicine ; Medicine & Public Health ; Monocytosis ; Mutants ; Mutation ; Myelodysplastic syndrome ; Myelodysplastic syndromes ; Myeloid leukemia ; Myelomonocytic leukemia ; Neutrophils ; Neutrophils - metabolism ; Neutrophils - pathology ; Oncology ; Phenotype ; Phenotypes ; Polycomb group proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Transcriptomes ; Zebrafish ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Leukemia, 2021-08, Vol.35 (8), p.2299-2310</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-dfa4873d105dceb81750a32fcb1f6eb1f536a724fe8442386fbd436436a1d6663</citedby><cites>FETCH-LOGICAL-c572t-dfa4873d105dceb81750a32fcb1f6eb1f536a724fe8442386fbd436436a1d6663</cites><orcidid>0000-0002-3326-0138 ; 0000-0002-9402-3523 ; 0000-0002-6840-1359 ; 0000-0002-3636-7133 ; 0000-0003-4286-4002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41375-021-01121-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41375-021-01121-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33483612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Xu, Song’en</creatorcontrib><creatorcontrib>Zhang, Yiyue</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Huang, Zhibin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Shunqing</creatorcontrib><creatorcontrib>Yen, Kuangyu</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><title>Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>ASXL1
is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies,
ASXL1
mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that
asxl1
-induced neutrophilic dysplasia was associated with reduced expression of
bmi1a
, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by
asxl1
mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.</description><subject>13/31</subject><subject>14/35</subject><subject>38/39</subject><subject>38/71</subject><subject>38/91</subject><subject>45/90</subject><subject>631/136/232</subject><subject>631/67/1990</subject><subject>64/116</subject><subject>96/63</subject><subject>Acute myeloid leukemia</subject><subject>Animals</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Chronic myelomonocytic leukemia</subject><subject>Critical Care Medicine</subject><subject>Danio rerio</subject><subject>Development and progression</subject><subject>Differentiation</subject><subject>Dysplasia</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryo, Nonmammalian - pathology</subject><subject>Embryos</subject><subject>Frameshift mutation</subject><subject>Gene expression</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Leukemia, Myelomonocytic, Chronic - genetics</subject><subject>Leukemia, Myelomonocytic, Chronic - metabolism</subject><subject>Leukemia, Myelomonocytic, Chronic - pathology</subject><subject>Leukemogenesis</subject><subject>Leukocytes (neutrophilic)</subject><subject>Malignancy</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Monocytosis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Myelodysplastic syndrome</subject><subject>Myelodysplastic syndromes</subject><subject>Myeloid leukemia</subject><subject>Myelomonocytic leukemia</subject><subject>Neutrophils</subject><subject>Neutrophils - metabolism</subject><subject>Neutrophils - pathology</subject><subject>Oncology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Polycomb group proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Transcriptomes</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kt2rFCEYxiWKzrb1D3QRA0F0Mye_dW-CZemTA93UtTgzuuvB0U2dQ_XX5zSn025EKAq-v_dRHx4AniJ4iSCRrzJFRLAWYtRChOoq74EVooK3jDF0H6yglKLlG0wvwKOcryGci_whuCCESsIRXoGP2_zNo2bXFpNGF7Rvxqno4mJojiaVKXW5CWYqKR4PzjeDs9YkE4pbGBeaH6ZL2rp8eAweWO2zeXK7r8GXt28-7963V5_efdhtr9qeCVzawWoqBRkQZENvOokEg5pg23fIclMXRrgWmFojKcVEctsNlPA6NRo452QNXi-6x6kbTdUIJWmvjsmNOn1XUTt1XgnuoPbxRkmCKRW0Cry8FUjx62RyUaPLvfFeBxOnrDCVkG6QQPNdz_9Cr-OUqk2VYowzKiA5ofbaG-WCjfXefhZVWy4g2vD6_Epd_oOqYzCj62Mw1tXzs4YXJw0Ho3055Oin2fl8DuIF7FPMORl7ZwaCao6KWqKialTUr6hUL9bg2amNdy2_s1EBsgC5lsLepD9__4_sT4BoyAE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Fang, Xiao</creator><creator>Xu, Song’en</creator><creator>Zhang, Yiyue</creator><creator>Xu, Jin</creator><creator>Huang, Zhibin</creator><creator>Liu, Wei</creator><creator>Wang, Shunqing</creator><creator>Yen, Kuangyu</creator><creator>Zhang, Wenqing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3326-0138</orcidid><orcidid>https://orcid.org/0000-0002-9402-3523</orcidid><orcidid>https://orcid.org/0000-0002-6840-1359</orcidid><orcidid>https://orcid.org/0000-0002-3636-7133</orcidid><orcidid>https://orcid.org/0000-0003-4286-4002</orcidid></search><sort><creationdate>20210801</creationdate><title>Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish</title><author>Fang, Xiao ; Xu, Song’en ; Zhang, Yiyue ; Xu, Jin ; Huang, Zhibin ; Liu, Wei ; Wang, Shunqing ; Yen, Kuangyu ; Zhang, Wenqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-dfa4873d105dceb81750a32fcb1f6eb1f536a724fe8442386fbd436436a1d6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>14/35</topic><topic>38/39</topic><topic>38/71</topic><topic>38/91</topic><topic>45/90</topic><topic>631/136/232</topic><topic>631/67/1990</topic><topic>64/116</topic><topic>96/63</topic><topic>Acute myeloid leukemia</topic><topic>Animals</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Chronic myelomonocytic leukemia</topic><topic>Critical Care Medicine</topic><topic>Danio rerio</topic><topic>Development and progression</topic><topic>Differentiation</topic><topic>Dysplasia</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryo, Nonmammalian - pathology</topic><topic>Embryos</topic><topic>Frameshift mutation</topic><topic>Gene expression</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Leukemia, Myelomonocytic, Chronic - genetics</topic><topic>Leukemia, Myelomonocytic, Chronic - metabolism</topic><topic>Leukemia, Myelomonocytic, Chronic - pathology</topic><topic>Leukemogenesis</topic><topic>Leukocytes (neutrophilic)</topic><topic>Malignancy</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Monocytosis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Myelodysplastic syndrome</topic><topic>Myelodysplastic syndromes</topic><topic>Myeloid leukemia</topic><topic>Myelomonocytic leukemia</topic><topic>Neutrophils</topic><topic>Neutrophils - metabolism</topic><topic>Neutrophils - pathology</topic><topic>Oncology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Polycomb group proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Transcriptomes</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Xu, Song’en</creatorcontrib><creatorcontrib>Zhang, Yiyue</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Huang, Zhibin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Wang, Shunqing</creatorcontrib><creatorcontrib>Yen, Kuangyu</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Xiao</au><au>Xu, Song’en</au><au>Zhang, Yiyue</au><au>Xu, Jin</au><au>Huang, Zhibin</au><au>Liu, Wei</au><au>Wang, Shunqing</au><au>Yen, Kuangyu</au><au>Zhang, Wenqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>35</volume><issue>8</issue><spage>2299</spage><epage>2310</epage><pages>2299-2310</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>ASXL1
is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies,
ASXL1
mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that
asxl1
-induced neutrophilic dysplasia was associated with reduced expression of
bmi1a
, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by
asxl1
mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33483612</pmid><doi>10.1038/s41375-021-01121-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3326-0138</orcidid><orcidid>https://orcid.org/0000-0002-9402-3523</orcidid><orcidid>https://orcid.org/0000-0002-6840-1359</orcidid><orcidid>https://orcid.org/0000-0002-3636-7133</orcidid><orcidid>https://orcid.org/0000-0003-4286-4002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2021-08, Vol.35 (8), p.2299-2310 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8324474 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 13/31 14/35 38/39 38/71 38/91 45/90 631/136/232 631/67/1990 64/116 96/63 Acute myeloid leukemia Animals Cancer Research Care and treatment Cell Differentiation Chronic myelomonocytic leukemia Critical Care Medicine Danio rerio Development and progression Differentiation Dysplasia Embryo, Nonmammalian - metabolism Embryo, Nonmammalian - pathology Embryos Frameshift mutation Gene expression Gene mutations Genetic aspects Health aspects Hematology Intensive Internal Medicine Leukemia Leukemia, Myeloid, Acute - genetics Leukemia, Myeloid, Acute - metabolism Leukemia, Myeloid, Acute - pathology Leukemia, Myelomonocytic, Chronic - genetics Leukemia, Myelomonocytic, Chronic - metabolism Leukemia, Myelomonocytic, Chronic - pathology Leukemogenesis Leukocytes (neutrophilic) Malignancy Medicine Medicine & Public Health Monocytosis Mutants Mutation Myelodysplastic syndrome Myelodysplastic syndromes Myeloid leukemia Myelomonocytic leukemia Neutrophils Neutrophils - metabolism Neutrophils - pathology Oncology Phenotype Phenotypes Polycomb group proteins Repressor Proteins - genetics Repressor Proteins - metabolism Transcriptomes Zebrafish Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asxl1%20C-terminal%20mutation%20perturbs%20neutrophil%20differentiation%20in%20zebrafish&rft.jtitle=Leukemia&rft.au=Fang,%20Xiao&rft.date=2021-08-01&rft.volume=35&rft.issue=8&rft.spage=2299&rft.epage=2310&rft.pages=2299-2310&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/s41375-021-01121-8&rft_dat=%3Cgale_pubme%3EA670196643%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556547036&rft_id=info:pmid/33483612&rft_galeid=A670196643&rfr_iscdi=true |