In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations

The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interdisciplinary sciences : computational life sciences 2021-09, Vol.13 (3), p.521-534
Hauptverfasser: Khan, Abbas, Umbreen, Shaheena, Hameed, Asma, Fatima, Rida, Zahoor, Ujala, Babar, Zainib, Waseem, Muhammad, Hussain, Zahid, Rizwan, Muhammad, Zaman, Nasib, Ali, Shahid, Suleman, Muhammad, Shah, Abdullah, Ali, Liaqat, Ali, Syed Shujait, Wei, Dong-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 3
container_start_page 521
container_title Interdisciplinary sciences : computational life sciences
container_volume 13
creator Khan, Abbas
Umbreen, Shaheena
Hameed, Asma
Fatima, Rida
Zahoor, Ujala
Babar, Zainib
Waseem, Muhammad
Hussain, Zahid
Rizwan, Muhammad
Zaman, Nasib
Ali, Shahid
Suleman, Muhammad
Shah, Abdullah
Ali, Liaqat
Ali, Syed Shujait
Wei, Dong-Qing
description The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak. Graphic abstract
doi_str_mv 10.1007/s12539-021-00447-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561092614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9dff7554592aa6f68c8dbf618982551db67257b6de6129d631ebb6f203f080733</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEoqXwAiyQJTawMPjfMQukMLQw0iCgKWwtJ3ZSVxl7sB2keQsemcCUFjasbOme-91POlX1GKMXGCH5MmPCqYKIYIgQYxKSO9UxroWEmAlyd_krTCGRHB9VD3K-QkiwmqL71RFllDDM5XH1Yx1A6yffR_BhLmZ0wWWf4RuTnQXnbhutmyYfRhAH0DbnLVzFrxCDT25XvHXgWXOx-dysm_Y5KBGsw6XvfLkFySvQljT3ZU5mgm_3wWx9n4EJFpwl58BpcGncg5WZ-nkyxceQH1b3BjNl9-j6Pam-nJ1erN7Dzcd361WzgT2TrEBlh0FyzrgixohB1H1tu0HgWtWEc2w7IQmXnbBOYKKsoNh1nRgIogOqkaT0pHp9yN3N3dbZ3oWydNS75Lcm7XU0Xv87Cf5Sj_G7rilWQqkl4Ol1QIrfZpeLvopzCktnTbjASBGB2UKRA9WnmHNyw80FjPQvi_pgUS8W9W-LmixLT_7udrPyR9sC0AOQl1EYXbq9_Z_Yn3Ynpt8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092614</pqid></control><display><type>article</type><title>In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Abbas ; Umbreen, Shaheena ; Hameed, Asma ; Fatima, Rida ; Zahoor, Ujala ; Babar, Zainib ; Waseem, Muhammad ; Hussain, Zahid ; Rizwan, Muhammad ; Zaman, Nasib ; Ali, Shahid ; Suleman, Muhammad ; Shah, Abdullah ; Ali, Liaqat ; Ali, Syed Shujait ; Wei, Dong-Qing</creator><creatorcontrib>Khan, Abbas ; Umbreen, Shaheena ; Hameed, Asma ; Fatima, Rida ; Zahoor, Ujala ; Babar, Zainib ; Waseem, Muhammad ; Hussain, Zahid ; Rizwan, Muhammad ; Zaman, Nasib ; Ali, Shahid ; Suleman, Muhammad ; Shah, Abdullah ; Ali, Liaqat ; Ali, Syed Shujait ; Wei, Dong-Qing</creatorcontrib><description>The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak. Graphic abstract</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-021-00447-2</identifier><identifier>PMID: 34324157</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Affinity ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Antiviral Agents - therapeutic use ; Binding ; Biomedical and Life Sciences ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Computer Simulation ; Coronavirus 3C Proteases - antagonists &amp; inhibitors ; Coronaviruses ; COVID-19 ; COVID-19 - drug therapy ; COVID-19 - virology ; Dynamic stability ; Dynamic structural analysis ; Free energy ; Health Sciences ; Humans ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Physics ; Medicine ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Mutagenesis ; Original ; Original Research Article ; Peptides ; Peptides - chemistry ; Peptides - genetics ; Peptides - pharmacology ; Protease Inhibitors - chemistry ; Protease Inhibitors - pharmacology ; Protease Inhibitors - therapeutic use ; Residues ; SARS Virus - chemistry ; SARS Virus - genetics ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - enzymology ; Severe acute respiratory syndrome coronavirus 2 ; Stability analysis ; Statistics for Life Sciences ; Theoretical ; Theoretical and Computational Chemistry ; Thermodynamics ; Vaccines ; Viral diseases</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.521-534</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2021</rights><rights>2021. International Association of Scientists in the Interdisciplinary Areas.</rights><rights>International Association of Scientists in the Interdisciplinary Areas 2021.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9dff7554592aa6f68c8dbf618982551db67257b6de6129d631ebb6f203f080733</citedby><cites>FETCH-LOGICAL-c474t-9dff7554592aa6f68c8dbf618982551db67257b6de6129d631ebb6f203f080733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12539-021-00447-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12539-021-00447-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34324157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Abbas</creatorcontrib><creatorcontrib>Umbreen, Shaheena</creatorcontrib><creatorcontrib>Hameed, Asma</creatorcontrib><creatorcontrib>Fatima, Rida</creatorcontrib><creatorcontrib>Zahoor, Ujala</creatorcontrib><creatorcontrib>Babar, Zainib</creatorcontrib><creatorcontrib>Waseem, Muhammad</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Nasib</creatorcontrib><creatorcontrib>Ali, Shahid</creatorcontrib><creatorcontrib>Suleman, Muhammad</creatorcontrib><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Ali, Liaqat</creatorcontrib><creatorcontrib>Ali, Syed Shujait</creatorcontrib><creatorcontrib>Wei, Dong-Qing</creatorcontrib><title>In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><addtitle>Interdiscip Sci</addtitle><description>The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak. Graphic abstract</description><subject>Affinity</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Binding</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Coronavirus 3C Proteases - antagonists &amp; inhibitors</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - drug therapy</subject><subject>COVID-19 - virology</subject><subject>Dynamic stability</subject><subject>Dynamic structural analysis</subject><subject>Free energy</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Medicine</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutagenesis</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - pharmacology</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protease Inhibitors - pharmacology</subject><subject>Protease Inhibitors - therapeutic use</subject><subject>Residues</subject><subject>SARS Virus - chemistry</subject><subject>SARS Virus - genetics</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - enzymology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Stability analysis</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermodynamics</subject><subject>Vaccines</subject><subject>Viral diseases</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURiMEoqXwAiyQJTawMPjfMQukMLQw0iCgKWwtJ3ZSVxl7sB2keQsemcCUFjasbOme-91POlX1GKMXGCH5MmPCqYKIYIgQYxKSO9UxroWEmAlyd_krTCGRHB9VD3K-QkiwmqL71RFllDDM5XH1Yx1A6yffR_BhLmZ0wWWf4RuTnQXnbhutmyYfRhAH0DbnLVzFrxCDT25XvHXgWXOx-dysm_Y5KBGsw6XvfLkFySvQljT3ZU5mgm_3wWx9n4EJFpwl58BpcGncg5WZ-nkyxceQH1b3BjNl9-j6Pam-nJ1erN7Dzcd361WzgT2TrEBlh0FyzrgixohB1H1tu0HgWtWEc2w7IQmXnbBOYKKsoNh1nRgIogOqkaT0pHp9yN3N3dbZ3oWydNS75Lcm7XU0Xv87Cf5Sj_G7rilWQqkl4Ol1QIrfZpeLvopzCktnTbjASBGB2UKRA9WnmHNyw80FjPQvi_pgUS8W9W-LmixLT_7udrPyR9sC0AOQl1EYXbq9_Z_Yn3Ynpt8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khan, Abbas</creator><creator>Umbreen, Shaheena</creator><creator>Hameed, Asma</creator><creator>Fatima, Rida</creator><creator>Zahoor, Ujala</creator><creator>Babar, Zainib</creator><creator>Waseem, Muhammad</creator><creator>Hussain, Zahid</creator><creator>Rizwan, Muhammad</creator><creator>Zaman, Nasib</creator><creator>Ali, Shahid</creator><creator>Suleman, Muhammad</creator><creator>Shah, Abdullah</creator><creator>Ali, Liaqat</creator><creator>Ali, Syed Shujait</creator><creator>Wei, Dong-Qing</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations</title><author>Khan, Abbas ; Umbreen, Shaheena ; Hameed, Asma ; Fatima, Rida ; Zahoor, Ujala ; Babar, Zainib ; Waseem, Muhammad ; Hussain, Zahid ; Rizwan, Muhammad ; Zaman, Nasib ; Ali, Shahid ; Suleman, Muhammad ; Shah, Abdullah ; Ali, Liaqat ; Ali, Syed Shujait ; Wei, Dong-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9dff7554592aa6f68c8dbf618982551db67257b6de6129d631ebb6f203f080733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Binding</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Coronavirus 3C Proteases - antagonists &amp; inhibitors</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - drug therapy</topic><topic>COVID-19 - virology</topic><topic>Dynamic stability</topic><topic>Dynamic structural analysis</topic><topic>Free energy</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Medicine</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutagenesis</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - pharmacology</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protease Inhibitors - pharmacology</topic><topic>Protease Inhibitors - therapeutic use</topic><topic>Residues</topic><topic>SARS Virus - chemistry</topic><topic>SARS Virus - genetics</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - enzymology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Stability analysis</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermodynamics</topic><topic>Vaccines</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Abbas</creatorcontrib><creatorcontrib>Umbreen, Shaheena</creatorcontrib><creatorcontrib>Hameed, Asma</creatorcontrib><creatorcontrib>Fatima, Rida</creatorcontrib><creatorcontrib>Zahoor, Ujala</creatorcontrib><creatorcontrib>Babar, Zainib</creatorcontrib><creatorcontrib>Waseem, Muhammad</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Nasib</creatorcontrib><creatorcontrib>Ali, Shahid</creatorcontrib><creatorcontrib>Suleman, Muhammad</creatorcontrib><creatorcontrib>Shah, Abdullah</creatorcontrib><creatorcontrib>Ali, Liaqat</creatorcontrib><creatorcontrib>Ali, Syed Shujait</creatorcontrib><creatorcontrib>Wei, Dong-Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Abbas</au><au>Umbreen, Shaheena</au><au>Hameed, Asma</au><au>Fatima, Rida</au><au>Zahoor, Ujala</au><au>Babar, Zainib</au><au>Waseem, Muhammad</au><au>Hussain, Zahid</au><au>Rizwan, Muhammad</au><au>Zaman, Nasib</au><au>Ali, Shahid</au><au>Suleman, Muhammad</au><au>Shah, Abdullah</au><au>Ali, Liaqat</au><au>Ali, Syed Shujait</au><au>Wei, Dong-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><addtitle>Interdiscip Sci</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>The prolific spread of COVID-19 caused by a novel coronavirus (SARS-CoV-2) from its epicenter in Wuhan, China, to every nook and cranny of the world after December 2019, jeopardize the prevailing health system in the world and has raised serious concerns about human safety. Multi-directional efforts are made to design small molecule inhibitors, and vaccines and many other therapeutic options are practiced, but their final therapeutic potential is still to be tested. Using the old drug or vaccine or peptides could aid this process to avoid such long experimental procedures. Hence, here, we have repurposed a small peptide (ATLQAIAS) from the previous study, which reported the inhibitory effects of this peptide. We used in silico mutagenesis approach to design more peptides from the native wild peptide, which revealed that substitutions (T2W, T2Y, L3R, and A5W) could increase the binding affinity of the peptide towards the 3CLpro. Furthermore, using MD simulation and free energy calculation confirmed its dynamics stability and stronger binding affinities. Per-residue energy decomposition analysis revealed that the specified substitution significantly increased the binding affinity at the residue level. Our wide-ranging analyses of binding affinities disclosed that our designed peptide owns the potential to hinder the SARS-CoV-2 and will reduce the progression of SARS-CoV-2-borne pneumonia. Our research strongly suggests the experimental and clinical validation of these peptides to curtail the recent corona outbreak. Graphic abstract</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>34324157</pmid><doi>10.1007/s12539-021-00447-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1913-2751
ispartof Interdisciplinary sciences : computational life sciences, 2021-09, Vol.13 (3), p.521-534
issn 1913-2751
1867-1462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319699
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Affinity
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Antiviral Agents - therapeutic use
Binding
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Computer Simulation
Coronavirus 3C Proteases - antagonists & inhibitors
Coronaviruses
COVID-19
COVID-19 - drug therapy
COVID-19 - virology
Dynamic stability
Dynamic structural analysis
Free energy
Health Sciences
Humans
Life Sciences
Mathematical analysis
Mathematical and Computational Physics
Medicine
Molecular Docking Simulation
Molecular Dynamics Simulation
Mutagenesis
Original
Original Research Article
Peptides
Peptides - chemistry
Peptides - genetics
Peptides - pharmacology
Protease Inhibitors - chemistry
Protease Inhibitors - pharmacology
Protease Inhibitors - therapeutic use
Residues
SARS Virus - chemistry
SARS Virus - genetics
SARS-CoV-2 - drug effects
SARS-CoV-2 - enzymology
Severe acute respiratory syndrome coronavirus 2
Stability analysis
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
Thermodynamics
Vaccines
Viral diseases
title In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Mutagenesis-Based%20Remodelling%20of%20SARS-CoV-1%20Peptide%20(ATLQAIAS)%20to%20Inhibit%20SARS-CoV-2:%20Structural-Dynamics%20and%20Free%20Energy%20Calculations&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Khan,%20Abbas&rft.date=2021-09-01&rft.volume=13&rft.issue=3&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-021-00447-2&rft_dat=%3Cproquest_pubme%3E2561092614%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092614&rft_id=info:pmid/34324157&rfr_iscdi=true