Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool
During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2021-08, Vol.15 (8), p.2248-2263 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2263 |
---|---|
container_issue | 8 |
container_start_page | 2248 |
container_title | The ISME Journal |
container_volume | 15 |
creator | Fan, Xianlei Gao, Decai Zhao, Chunhong Wang, Chao Qu, Ying Zhang, Jing Bai, Edith |
description | During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of
13
C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes. |
doi_str_mv | 10.1038/s41396-021-00914-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555779138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</originalsourceid><addsrcrecordid>eNp9UctOxCAUJUbj-wdcGBI3bqo8S9mYmImvxMSNrgmldMTQUqE1mb-XcXR8LFzB5Z5zOPceAI4wOsOIVueJYSrLAhFcICQxK9AG2MWC40JQgTbX95LsgL2UXhDioizFNtihtMSScrYL_F03xPBmG9iFxnqYXDd5PbrQw9DCFJyHRsc6l2ZhvOvnsF7AaIdok-3HZT0-W9g5E0PttPcL2NjolnohznXvzBd9CMEfgK1W-2QPP8998HR99Ti7Le4fbu5ml_eFYYKNBcVCVswyrWVVSYktqVpSs5rz5TuiEpe11G2FGNWM81aaBjecyVIILjFhdB9crHSHqe5sY7LTqL0aout0XKignfrd6d2zmoc3VVEsicRZ4PRTIIbXyaZRdS4Z673ubZiSIkySMq8Q8Qw9-QN9CVPs83iK8OxYZLkqo8gKlfeUUrTt2gxGahmmWoWpcpjqI0yFMun45xhryld6GUBXgJRb_dzG77__kX0HIa-rOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555779138</pqid></control><display><type>article</type><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</creator><creatorcontrib>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</creatorcontrib><description>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of
13
C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-021-00914-0</identifier><identifier>PMID: 33619354</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/158/2451 ; 704/158/2466 ; 704/158/855 ; 704/47 ; Biomedical and Life Sciences ; Carbon ; Carbon cycle ; Decomposition ; Ecology ; Evolutionary Biology ; Life Sciences ; Metabolites ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Organic carbon ; Organic soils ; Plants ; Simulation ; Soils</subject><ispartof>The ISME Journal, 2021-08, Vol.15 (8), p.2248-2263</ispartof><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021</rights><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</citedby><cites>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</cites><orcidid>0000-0002-5756-7505 ; 0000-0001-8124-2260 ; 0000-0003-0495-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319291/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319291/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33619354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Xianlei</creatorcontrib><creatorcontrib>Gao, Decai</creatorcontrib><creatorcontrib>Zhao, Chunhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Qu, Ying</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bai, Edith</creatorcontrib><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of
13
C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</description><subject>704/158/2451</subject><subject>704/158/2466</subject><subject>704/158/855</subject><subject>704/47</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Decomposition</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Plants</subject><subject>Simulation</subject><subject>Soils</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UctOxCAUJUbj-wdcGBI3bqo8S9mYmImvxMSNrgmldMTQUqE1mb-XcXR8LFzB5Z5zOPceAI4wOsOIVueJYSrLAhFcICQxK9AG2MWC40JQgTbX95LsgL2UXhDioizFNtihtMSScrYL_F03xPBmG9iFxnqYXDd5PbrQw9DCFJyHRsc6l2ZhvOvnsF7AaIdok-3HZT0-W9g5E0PttPcL2NjolnohznXvzBd9CMEfgK1W-2QPP8998HR99Ti7Le4fbu5ml_eFYYKNBcVCVswyrWVVSYktqVpSs5rz5TuiEpe11G2FGNWM81aaBjecyVIILjFhdB9crHSHqe5sY7LTqL0aout0XKignfrd6d2zmoc3VVEsicRZ4PRTIIbXyaZRdS4Z673ubZiSIkySMq8Q8Qw9-QN9CVPs83iK8OxYZLkqo8gKlfeUUrTt2gxGahmmWoWpcpjqI0yFMun45xhryld6GUBXgJRb_dzG77__kX0HIa-rOQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Fan, Xianlei</creator><creator>Gao, Decai</creator><creator>Zhao, Chunhong</creator><creator>Wang, Chao</creator><creator>Qu, Ying</creator><creator>Zhang, Jing</creator><creator>Bai, Edith</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5756-7505</orcidid><orcidid>https://orcid.org/0000-0001-8124-2260</orcidid><orcidid>https://orcid.org/0000-0003-0495-6504</orcidid></search><sort><creationdate>20210801</creationdate><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><author>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/158/2451</topic><topic>704/158/2466</topic><topic>704/158/855</topic><topic>704/47</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Decomposition</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Plants</topic><topic>Simulation</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xianlei</creatorcontrib><creatorcontrib>Gao, Decai</creatorcontrib><creatorcontrib>Zhao, Chunhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Qu, Ying</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bai, Edith</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xianlei</au><au>Gao, Decai</au><au>Zhao, Chunhong</au><au>Wang, Chao</au><au>Qu, Ying</au><au>Zhang, Jing</au><au>Bai, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>2248</spage><epage>2263</epage><pages>2248-2263</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of
13
C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33619354</pmid><doi>10.1038/s41396-021-00914-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5756-7505</orcidid><orcidid>https://orcid.org/0000-0001-8124-2260</orcidid><orcidid>https://orcid.org/0000-0003-0495-6504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2021-08, Vol.15 (8), p.2248-2263 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319291 |
source | Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 704/158/2451 704/158/2466 704/158/855 704/47 Biomedical and Life Sciences Carbon Carbon cycle Decomposition Ecology Evolutionary Biology Life Sciences Metabolites Microbial Ecology Microbial Genetics and Genomics Microbiology Microorganisms Organic carbon Organic soils Plants Simulation Soils |
title | Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20model%20simulation%20of%20soil%20carbon%20cycling%20by%20representing%20the%20microbially%20derived%20organic%20carbon%20pool&rft.jtitle=The%20ISME%20Journal&rft.au=Fan,%20Xianlei&rft.date=2021-08-01&rft.volume=15&rft.issue=8&rft.spage=2248&rft.epage=2263&rft.pages=2248-2263&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-021-00914-0&rft_dat=%3Cproquest_pubme%3E2555779138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555779138&rft_id=info:pmid/33619354&rfr_iscdi=true |