Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool

During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2021-08, Vol.15 (8), p.2248-2263
Hauptverfasser: Fan, Xianlei, Gao, Decai, Zhao, Chunhong, Wang, Chao, Qu, Ying, Zhang, Jing, Bai, Edith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2263
container_issue 8
container_start_page 2248
container_title The ISME Journal
container_volume 15
creator Fan, Xianlei
Gao, Decai
Zhao, Chunhong
Wang, Chao
Qu, Ying
Zhang, Jing
Bai, Edith
description During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of 13 C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.
doi_str_mv 10.1038/s41396-021-00914-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555779138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</originalsourceid><addsrcrecordid>eNp9UctOxCAUJUbj-wdcGBI3bqo8S9mYmImvxMSNrgmldMTQUqE1mb-XcXR8LFzB5Z5zOPceAI4wOsOIVueJYSrLAhFcICQxK9AG2MWC40JQgTbX95LsgL2UXhDioizFNtihtMSScrYL_F03xPBmG9iFxnqYXDd5PbrQw9DCFJyHRsc6l2ZhvOvnsF7AaIdok-3HZT0-W9g5E0PttPcL2NjolnohznXvzBd9CMEfgK1W-2QPP8998HR99Ti7Le4fbu5ml_eFYYKNBcVCVswyrWVVSYktqVpSs5rz5TuiEpe11G2FGNWM81aaBjecyVIILjFhdB9crHSHqe5sY7LTqL0aout0XKignfrd6d2zmoc3VVEsicRZ4PRTIIbXyaZRdS4Z673ubZiSIkySMq8Q8Qw9-QN9CVPs83iK8OxYZLkqo8gKlfeUUrTt2gxGahmmWoWpcpjqI0yFMun45xhryld6GUBXgJRb_dzG77__kX0HIa-rOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555779138</pqid></control><display><type>article</type><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><source>Oxford Journals Open Access Collection</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</creator><creatorcontrib>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</creatorcontrib><description>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of 13 C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-021-00914-0</identifier><identifier>PMID: 33619354</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/158/2451 ; 704/158/2466 ; 704/158/855 ; 704/47 ; Biomedical and Life Sciences ; Carbon ; Carbon cycle ; Decomposition ; Ecology ; Evolutionary Biology ; Life Sciences ; Metabolites ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Organic carbon ; Organic soils ; Plants ; Simulation ; Soils</subject><ispartof>The ISME Journal, 2021-08, Vol.15 (8), p.2248-2263</ispartof><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021</rights><rights>The Author(s), under exclusive licence to International Society for Microbial Ecology 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</citedby><cites>FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</cites><orcidid>0000-0002-5756-7505 ; 0000-0001-8124-2260 ; 0000-0003-0495-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319291/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319291/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33619354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Xianlei</creatorcontrib><creatorcontrib>Gao, Decai</creatorcontrib><creatorcontrib>Zhao, Chunhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Qu, Ying</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bai, Edith</creatorcontrib><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of 13 C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</description><subject>704/158/2451</subject><subject>704/158/2466</subject><subject>704/158/855</subject><subject>704/47</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Decomposition</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Plants</subject><subject>Simulation</subject><subject>Soils</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UctOxCAUJUbj-wdcGBI3bqo8S9mYmImvxMSNrgmldMTQUqE1mb-XcXR8LFzB5Z5zOPceAI4wOsOIVueJYSrLAhFcICQxK9AG2MWC40JQgTbX95LsgL2UXhDioizFNtihtMSScrYL_F03xPBmG9iFxnqYXDd5PbrQw9DCFJyHRsc6l2ZhvOvnsF7AaIdok-3HZT0-W9g5E0PttPcL2NjolnohznXvzBd9CMEfgK1W-2QPP8998HR99Ti7Le4fbu5ml_eFYYKNBcVCVswyrWVVSYktqVpSs5rz5TuiEpe11G2FGNWM81aaBjecyVIILjFhdB9crHSHqe5sY7LTqL0aout0XKignfrd6d2zmoc3VVEsicRZ4PRTIIbXyaZRdS4Z673ubZiSIkySMq8Q8Qw9-QN9CVPs83iK8OxYZLkqo8gKlfeUUrTt2gxGahmmWoWpcpjqI0yFMun45xhryld6GUBXgJRb_dzG77__kX0HIa-rOQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Fan, Xianlei</creator><creator>Gao, Decai</creator><creator>Zhao, Chunhong</creator><creator>Wang, Chao</creator><creator>Qu, Ying</creator><creator>Zhang, Jing</creator><creator>Bai, Edith</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5756-7505</orcidid><orcidid>https://orcid.org/0000-0001-8124-2260</orcidid><orcidid>https://orcid.org/0000-0003-0495-6504</orcidid></search><sort><creationdate>20210801</creationdate><title>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</title><author>Fan, Xianlei ; Gao, Decai ; Zhao, Chunhong ; Wang, Chao ; Qu, Ying ; Zhang, Jing ; Bai, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-317984e4aa988991e28f2b4b55798403916b9af8043a455f9cd1d549677591243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/158/2451</topic><topic>704/158/2466</topic><topic>704/158/855</topic><topic>704/47</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Decomposition</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Plants</topic><topic>Simulation</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xianlei</creatorcontrib><creatorcontrib>Gao, Decai</creatorcontrib><creatorcontrib>Zhao, Chunhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Qu, Ying</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Bai, Edith</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xianlei</au><au>Gao, Decai</au><au>Zhao, Chunhong</au><au>Wang, Chao</au><au>Qu, Ying</au><au>Zhang, Jing</au><au>Bai, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>15</volume><issue>8</issue><spage>2248</spage><epage>2263</epage><pages>2248-2263</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis–Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of 13 C-labeled necromass. Our models showed better performance than existing models and the Michaelis–Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10–27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33619354</pmid><doi>10.1038/s41396-021-00914-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5756-7505</orcidid><orcidid>https://orcid.org/0000-0001-8124-2260</orcidid><orcidid>https://orcid.org/0000-0003-0495-6504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2021-08, Vol.15 (8), p.2248-2263
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319291
source Oxford Journals Open Access Collection; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 704/158/2451
704/158/2466
704/158/855
704/47
Biomedical and Life Sciences
Carbon
Carbon cycle
Decomposition
Ecology
Evolutionary Biology
Life Sciences
Metabolites
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Organic carbon
Organic soils
Plants
Simulation
Soils
title Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20model%20simulation%20of%20soil%20carbon%20cycling%20by%20representing%20the%20microbially%20derived%20organic%20carbon%20pool&rft.jtitle=The%20ISME%20Journal&rft.au=Fan,%20Xianlei&rft.date=2021-08-01&rft.volume=15&rft.issue=8&rft.spage=2248&rft.epage=2263&rft.pages=2248-2263&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-021-00914-0&rft_dat=%3Cproquest_pubme%3E2555779138%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555779138&rft_id=info:pmid/33619354&rfr_iscdi=true