Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries
Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2021-05, Vol.39 (5), p.630-641 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 5 |
container_start_page | 630 |
container_title | Nature biotechnology |
container_volume | 39 |
creator | Kuljanin, Miljan Mitchell, Dylan C. Schweppe, Devin K. Gikandi, Ajami S. Nusinow, David P. Bulloch, Nathan J. Vinogradova, Ekaterina V. Wilson, David L. Kool, Eric T. Mancias, Joseph D. Cravatt, Benjamin F. Gygi, Steven P. |
description | Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)
G12C
and Bruton’s tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
An improved workflow enables a 42-fold higher throughput of activity-based protein profiling. |
doi_str_mv | 10.1038/s41587-020-00778-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661589717</galeid><sourcerecordid>A661589717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743t-e67166372b8d9c347ce7e0500df7757444019980aedb1716a455acea777000373</originalsourceid><addsrcrecordid>eNqNkm1r1jAYhYsobk7_gB-kIIiCnUnz2i_CGL4MBoP58jWk6d02o0_ymKTD_XtTn7mtoiKFtnBf56R3zymKpxgdYkTkm0gxk6JCNaoQEkJW5F6xjxnlFeYNv5_f0TLGjO8Vj2K8QAhxyvnDYo8Q0shM7hfpHOxGD9ZZN5SjHcYqjcHPw7idU7kNvrfTMvF9GUCbZC-hNFcxgXUQy96H0sA0Va2O0JXRBAB3jU86DFDCBCYFvx3tBOVk26CDhfi4eNDrKcKT6-dB8eX9u8_HH6vTsw8nx0enlRGUpAq4wJwTUbeyawyhwoAAxBDqeiGYoJQi3DQSaehanFFNGdMGtBAir0oEOSje7ny3c7uBzoBLQU9qG_LK4Up5bdV64uyoBn-pJMl_UNJs8PLaIPhvM8SkNjYuG2sHfo6qpoJRRBpWZ_T5b-iFn4PL66ma1UzKRjB5Sw16AmVd7_O5ZjFVR5znOBuBl-8-_AOVrw421ngHORVYC16sBJlJ8D0Neo5RrcFXfwdPPp3_P3v2dc2-vsO2c1z6kW8xNyrFnWSF1zvcBB9jgP4mE4zU0m2167bK3VY_u61IFj27m-aN5FeZM0B2QMwjN0C4jeAftj8AIs0CQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525889758</pqid></control><display><type>article</type><title>Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kuljanin, Miljan ; Mitchell, Dylan C. ; Schweppe, Devin K. ; Gikandi, Ajami S. ; Nusinow, David P. ; Bulloch, Nathan J. ; Vinogradova, Ekaterina V. ; Wilson, David L. ; Kool, Eric T. ; Mancias, Joseph D. ; Cravatt, Benjamin F. ; Gygi, Steven P.</creator><creatorcontrib>Kuljanin, Miljan ; Mitchell, Dylan C. ; Schweppe, Devin K. ; Gikandi, Ajami S. ; Nusinow, David P. ; Bulloch, Nathan J. ; Vinogradova, Ekaterina V. ; Wilson, David L. ; Kool, Eric T. ; Mancias, Joseph D. ; Cravatt, Benjamin F. ; Gygi, Steven P.</creatorcontrib><description>Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)
G12C
and Bruton’s tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
An improved workflow enables a 42-fold higher throughput of activity-based protein profiling.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-00778-3</identifier><identifier>PMID: 33398154</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/92 ; 631/92/475 ; Agammaglobulinaemia Tyrosine Kinase - genetics ; Agriculture ; Amino acids ; Amino Acids - genetics ; Antioxidant Response Elements - genetics ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Bruton's tyrosine kinase ; Cysteine ; Cysteine - genetics ; Data acquisition ; High-throughput screening (Biochemical assaying) ; Humans ; Kinases ; Libraries ; Life Sciences ; Mass Spectrometry ; Methods ; Multiplexing ; Physiological aspects ; Protein folding ; Protein-tyrosine kinase ; Proteins ; Proteome - genetics ; Proteomes ; Proteomics - trends ; Proto-Oncogene Proteins p21(ras) - genetics ; Reactivity ; Resource ; Sarcoma ; Target recognition ; Tyrosine ; Workflow</subject><ispartof>Nature biotechnology, 2021-05, Vol.39 (5), p.630-641</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743t-e67166372b8d9c347ce7e0500df7757444019980aedb1716a455acea777000373</citedby><cites>FETCH-LOGICAL-c743t-e67166372b8d9c347ce7e0500df7757444019980aedb1716a455acea777000373</cites><orcidid>0000-0002-3241-6276 ; 0000-0002-7819-5261 ; 0000-0002-1922-427X ; 0000-0001-7626-0034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-020-00778-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-020-00778-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuljanin, Miljan</creatorcontrib><creatorcontrib>Mitchell, Dylan C.</creatorcontrib><creatorcontrib>Schweppe, Devin K.</creatorcontrib><creatorcontrib>Gikandi, Ajami S.</creatorcontrib><creatorcontrib>Nusinow, David P.</creatorcontrib><creatorcontrib>Bulloch, Nathan J.</creatorcontrib><creatorcontrib>Vinogradova, Ekaterina V.</creatorcontrib><creatorcontrib>Wilson, David L.</creatorcontrib><creatorcontrib>Kool, Eric T.</creatorcontrib><creatorcontrib>Mancias, Joseph D.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><title>Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)
G12C
and Bruton’s tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
An improved workflow enables a 42-fold higher throughput of activity-based protein profiling.</description><subject>631/92</subject><subject>631/92/475</subject><subject>Agammaglobulinaemia Tyrosine Kinase - genetics</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Amino Acids - genetics</subject><subject>Antioxidant Response Elements - genetics</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bruton's tyrosine kinase</subject><subject>Cysteine</subject><subject>Cysteine - genetics</subject><subject>Data acquisition</subject><subject>High-throughput screening (Biochemical assaying)</subject><subject>Humans</subject><subject>Kinases</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Mass Spectrometry</subject><subject>Methods</subject><subject>Multiplexing</subject><subject>Physiological aspects</subject><subject>Protein folding</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Proteome - genetics</subject><subject>Proteomes</subject><subject>Proteomics - trends</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Reactivity</subject><subject>Resource</subject><subject>Sarcoma</subject><subject>Target recognition</subject><subject>Tyrosine</subject><subject>Workflow</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkm1r1jAYhYsobk7_gB-kIIiCnUnz2i_CGL4MBoP58jWk6d02o0_ymKTD_XtTn7mtoiKFtnBf56R3zymKpxgdYkTkm0gxk6JCNaoQEkJW5F6xjxnlFeYNv5_f0TLGjO8Vj2K8QAhxyvnDYo8Q0shM7hfpHOxGD9ZZN5SjHcYqjcHPw7idU7kNvrfTMvF9GUCbZC-hNFcxgXUQy96H0sA0Va2O0JXRBAB3jU86DFDCBCYFvx3tBOVk26CDhfi4eNDrKcKT6-dB8eX9u8_HH6vTsw8nx0enlRGUpAq4wJwTUbeyawyhwoAAxBDqeiGYoJQi3DQSaehanFFNGdMGtBAir0oEOSje7ny3c7uBzoBLQU9qG_LK4Up5bdV64uyoBn-pJMl_UNJs8PLaIPhvM8SkNjYuG2sHfo6qpoJRRBpWZ_T5b-iFn4PL66ma1UzKRjB5Sw16AmVd7_O5ZjFVR5znOBuBl-8-_AOVrw421ngHORVYC16sBJlJ8D0Neo5RrcFXfwdPPp3_P3v2dc2-vsO2c1z6kW8xNyrFnWSF1zvcBB9jgP4mE4zU0m2167bK3VY_u61IFj27m-aN5FeZM0B2QMwjN0C4jeAftj8AIs0CQg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kuljanin, Miljan</creator><creator>Mitchell, Dylan C.</creator><creator>Schweppe, Devin K.</creator><creator>Gikandi, Ajami S.</creator><creator>Nusinow, David P.</creator><creator>Bulloch, Nathan J.</creator><creator>Vinogradova, Ekaterina V.</creator><creator>Wilson, David L.</creator><creator>Kool, Eric T.</creator><creator>Mancias, Joseph D.</creator><creator>Cravatt, Benjamin F.</creator><creator>Gygi, Steven P.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3241-6276</orcidid><orcidid>https://orcid.org/0000-0002-7819-5261</orcidid><orcidid>https://orcid.org/0000-0002-1922-427X</orcidid><orcidid>https://orcid.org/0000-0001-7626-0034</orcidid></search><sort><creationdate>20210501</creationdate><title>Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries</title><author>Kuljanin, Miljan ; Mitchell, Dylan C. ; Schweppe, Devin K. ; Gikandi, Ajami S. ; Nusinow, David P. ; Bulloch, Nathan J. ; Vinogradova, Ekaterina V. ; Wilson, David L. ; Kool, Eric T. ; Mancias, Joseph D. ; Cravatt, Benjamin F. ; Gygi, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743t-e67166372b8d9c347ce7e0500df7757444019980aedb1716a455acea777000373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/92</topic><topic>631/92/475</topic><topic>Agammaglobulinaemia Tyrosine Kinase - genetics</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Amino Acids - genetics</topic><topic>Antioxidant Response Elements - genetics</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bruton's tyrosine kinase</topic><topic>Cysteine</topic><topic>Cysteine - genetics</topic><topic>Data acquisition</topic><topic>High-throughput screening (Biochemical assaying)</topic><topic>Humans</topic><topic>Kinases</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Mass Spectrometry</topic><topic>Methods</topic><topic>Multiplexing</topic><topic>Physiological aspects</topic><topic>Protein folding</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Proteome - genetics</topic><topic>Proteomes</topic><topic>Proteomics - trends</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Reactivity</topic><topic>Resource</topic><topic>Sarcoma</topic><topic>Target recognition</topic><topic>Tyrosine</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuljanin, Miljan</creatorcontrib><creatorcontrib>Mitchell, Dylan C.</creatorcontrib><creatorcontrib>Schweppe, Devin K.</creatorcontrib><creatorcontrib>Gikandi, Ajami S.</creatorcontrib><creatorcontrib>Nusinow, David P.</creatorcontrib><creatorcontrib>Bulloch, Nathan J.</creatorcontrib><creatorcontrib>Vinogradova, Ekaterina V.</creatorcontrib><creatorcontrib>Wilson, David L.</creatorcontrib><creatorcontrib>Kool, Eric T.</creatorcontrib><creatorcontrib>Mancias, Joseph D.</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuljanin, Miljan</au><au>Mitchell, Dylan C.</au><au>Schweppe, Devin K.</au><au>Gikandi, Ajami S.</au><au>Nusinow, David P.</au><au>Bulloch, Nathan J.</au><au>Vinogradova, Ekaterina V.</au><au>Wilson, David L.</au><au>Kool, Eric T.</au><au>Mancias, Joseph D.</au><au>Cravatt, Benjamin F.</au><au>Gygi, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>39</volume><issue>5</issue><spage>630</spage><epage>641</epage><pages>630-641</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)
G12C
and Bruton’s tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
An improved workflow enables a 42-fold higher throughput of activity-based protein profiling.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33398154</pmid><doi>10.1038/s41587-020-00778-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3241-6276</orcidid><orcidid>https://orcid.org/0000-0002-7819-5261</orcidid><orcidid>https://orcid.org/0000-0002-1922-427X</orcidid><orcidid>https://orcid.org/0000-0001-7626-0034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2021-05, Vol.39 (5), p.630-641 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316984 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/92 631/92/475 Agammaglobulinaemia Tyrosine Kinase - genetics Agriculture Amino acids Amino Acids - genetics Antioxidant Response Elements - genetics Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Bruton's tyrosine kinase Cysteine Cysteine - genetics Data acquisition High-throughput screening (Biochemical assaying) Humans Kinases Libraries Life Sciences Mass Spectrometry Methods Multiplexing Physiological aspects Protein folding Protein-tyrosine kinase Proteins Proteome - genetics Proteomes Proteomics - trends Proto-Oncogene Proteins p21(ras) - genetics Reactivity Resource Sarcoma Target recognition Tyrosine Workflow |
title | Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reimagining%20high-throughput%20profiling%20of%20reactive%20cysteines%20for%20cell-based%20screening%20of%20large%20electrophile%20libraries&rft.jtitle=Nature%20biotechnology&rft.au=Kuljanin,%20Miljan&rft.date=2021-05-01&rft.volume=39&rft.issue=5&rft.spage=630&rft.epage=641&rft.pages=630-641&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-00778-3&rft_dat=%3Cgale_pubme%3EA661589717%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525889758&rft_id=info:pmid/33398154&rft_galeid=A661589717&rfr_iscdi=true |