LMO3 reprograms visceral adipocyte metabolism during obesity

Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2021-08, Vol.99 (8), p.1151-1171
Hauptverfasser: Wagner, Gabriel, Fenzl, Anna, Lindroos-Christensen, Josefine, Einwallner, Elisa, Husa, Julia, Witzeneder, Nadine, Rauscher, Sabine, Gröger, Marion, Derdak, Sophia, Mohr, Thomas, Sutterlüty, Hedwig, Klinglmüller, Florian, Wolkerstorfer, Silviya, Fondi, Martina, Hoermann, Gregor, Cao, Lei, Wagner, Oswald, Kiefer, Florian W., Esterbauer, Harald, Bilban, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue 8
container_start_page 1151
container_title Journal of molecular medicine (Berlin, Germany)
container_volume 99
creator Wagner, Gabriel
Fenzl, Anna
Lindroos-Christensen, Josefine
Einwallner, Elisa
Husa, Julia
Witzeneder, Nadine
Rauscher, Sabine
Gröger, Marion
Derdak, Sophia
Mohr, Thomas
Sutterlüty, Hedwig
Klinglmüller, Florian
Wolkerstorfer, Silviya
Fondi, Martina
Hoermann, Gregor
Cao, Lei
Wagner, Oswald
Kiefer, Florian W.
Esterbauer, Harald
Bilban, Martin
description Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacit
doi_str_mv 10.1007/s00109-021-02089-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8313462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531215696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-13e03b433f5901fa7a1785cbd2cb73e3424b0901ab63291c8353420295e062d43</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVoyG7T_oEcgqGXXpzMaCTbglIooWkKG_aSnIVsa7cOtuVIdmD_fbXZzTbpIQch0HzzZp4eY2cIFwiQXwYABJUCx3igUKk6YnMUxFMUAj6wOSiRpTzHbMY-hvAQ8VwqccJmJAALwGzOvi1ul5R4O3i39qYLyVMTKutNm5i6GVy1GW3S2dGUrm1Cl9STb_p14kobmnHziR2vTBvs5_19yu6vf95d3aSL5a_fVz8WaSVyMaZIFqgURCupAFcmN5gXsiprXpU5WRJclBArpsyIK6wKkvENuJIWMl4LOmXfd7rDVHa2rmw_xg314JvO-I12ptFvK33zR6_dky4ISWQ8CnzdC3j3ONkw6m5rs21Nb90UNJeEHGWmsoh--Q99cJPvo71IScmJcwmR4juq8i4Eb1eHZRD0Nhy9C0fHcPRzOFrFpvPXNg4tL2lEgHZAGLbfbP2_2e_I_gWNG5jj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555232250</pqid></control><display><type>article</type><title>LMO3 reprograms visceral adipocyte metabolism during obesity</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Wagner, Gabriel ; Fenzl, Anna ; Lindroos-Christensen, Josefine ; Einwallner, Elisa ; Husa, Julia ; Witzeneder, Nadine ; Rauscher, Sabine ; Gröger, Marion ; Derdak, Sophia ; Mohr, Thomas ; Sutterlüty, Hedwig ; Klinglmüller, Florian ; Wolkerstorfer, Silviya ; Fondi, Martina ; Hoermann, Gregor ; Cao, Lei ; Wagner, Oswald ; Kiefer, Florian W. ; Esterbauer, Harald ; Bilban, Martin</creator><creatorcontrib>Wagner, Gabriel ; Fenzl, Anna ; Lindroos-Christensen, Josefine ; Einwallner, Elisa ; Husa, Julia ; Witzeneder, Nadine ; Rauscher, Sabine ; Gröger, Marion ; Derdak, Sophia ; Mohr, Thomas ; Sutterlüty, Hedwig ; Klinglmüller, Florian ; Wolkerstorfer, Silviya ; Fondi, Martina ; Hoermann, Gregor ; Cao, Lei ; Wagner, Oswald ; Kiefer, Florian W. ; Esterbauer, Harald ; Bilban, Martin</creatorcontrib><description>Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-021-02089-9</identifier><identifier>PMID: 34018016</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3T3-L1 Cells ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Adipocytes ; Adipocytes - metabolism ; Adiponectin ; Adipose tissue (brown) ; Animals ; Bioenergetics ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Body fat ; Diabetes mellitus (non-insulin dependent) ; Disease Models, Animal ; Disease Susceptibility ; Energy Metabolism ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Glucose ; Glucose - metabolism ; Glucose Transporter Type 4 - genetics ; Glucose Transporter Type 4 - metabolism ; High fat diet ; Human Genetics ; Humans ; Insulin ; Insulin - metabolism ; Internal Medicine ; Intra-Abdominal Fat - cytology ; Intra-Abdominal Fat - metabolism ; LIM Domain Proteins - genetics ; LIM Domain Proteins - metabolism ; Metabolic syndrome ; Metabolism ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Models, Biological ; Molecular Medicine ; Obesity ; Obesity - etiology ; Obesity - metabolism ; Original ; Original Article ; Oxidation ; Oxidation-Reduction ; Oxidative Phosphorylation ; PPAR gamma - metabolism ; Protein Binding ; Risk factors ; Signal transduction ; Transcription</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2021-08, Vol.99 (8), p.1151-1171</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-13e03b433f5901fa7a1785cbd2cb73e3424b0901ab63291c8353420295e062d43</citedby><cites>FETCH-LOGICAL-c474t-13e03b433f5901fa7a1785cbd2cb73e3424b0901ab63291c8353420295e062d43</cites><orcidid>0000-0001-7043-7142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00109-021-02089-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00109-021-02089-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34018016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Gabriel</creatorcontrib><creatorcontrib>Fenzl, Anna</creatorcontrib><creatorcontrib>Lindroos-Christensen, Josefine</creatorcontrib><creatorcontrib>Einwallner, Elisa</creatorcontrib><creatorcontrib>Husa, Julia</creatorcontrib><creatorcontrib>Witzeneder, Nadine</creatorcontrib><creatorcontrib>Rauscher, Sabine</creatorcontrib><creatorcontrib>Gröger, Marion</creatorcontrib><creatorcontrib>Derdak, Sophia</creatorcontrib><creatorcontrib>Mohr, Thomas</creatorcontrib><creatorcontrib>Sutterlüty, Hedwig</creatorcontrib><creatorcontrib>Klinglmüller, Florian</creatorcontrib><creatorcontrib>Wolkerstorfer, Silviya</creatorcontrib><creatorcontrib>Fondi, Martina</creatorcontrib><creatorcontrib>Hoermann, Gregor</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Wagner, Oswald</creatorcontrib><creatorcontrib>Kiefer, Florian W.</creatorcontrib><creatorcontrib>Esterbauer, Harald</creatorcontrib><creatorcontrib>Bilban, Martin</creatorcontrib><title>LMO3 reprograms visceral adipocyte metabolism during obesity</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.</description><subject>3T3-L1 Cells</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Adiponectin</subject><subject>Adipose tissue (brown)</subject><subject>Animals</subject><subject>Bioenergetics</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body fat</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Disease Models, Animal</subject><subject>Disease Susceptibility</subject><subject>Energy Metabolism</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>High fat diet</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Internal Medicine</subject><subject>Intra-Abdominal Fat - cytology</subject><subject>Intra-Abdominal Fat - metabolism</subject><subject>LIM Domain Proteins - genetics</subject><subject>LIM Domain Proteins - metabolism</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Molecular Medicine</subject><subject>Obesity</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Phosphorylation</subject><subject>PPAR gamma - metabolism</subject><subject>Protein Binding</subject><subject>Risk factors</subject><subject>Signal transduction</subject><subject>Transcription</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFr3DAQhUVoyG7T_oEcgqGXXpzMaCTbglIooWkKG_aSnIVsa7cOtuVIdmD_fbXZzTbpIQch0HzzZp4eY2cIFwiQXwYABJUCx3igUKk6YnMUxFMUAj6wOSiRpTzHbMY-hvAQ8VwqccJmJAALwGzOvi1ul5R4O3i39qYLyVMTKutNm5i6GVy1GW3S2dGUrm1Cl9STb_p14kobmnHziR2vTBvs5_19yu6vf95d3aSL5a_fVz8WaSVyMaZIFqgURCupAFcmN5gXsiprXpU5WRJclBArpsyIK6wKkvENuJIWMl4LOmXfd7rDVHa2rmw_xg314JvO-I12ptFvK33zR6_dky4ISWQ8CnzdC3j3ONkw6m5rs21Nb90UNJeEHGWmsoh--Q99cJPvo71IScmJcwmR4juq8i4Eb1eHZRD0Nhy9C0fHcPRzOFrFpvPXNg4tL2lEgHZAGLbfbP2_2e_I_gWNG5jj</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wagner, Gabriel</creator><creator>Fenzl, Anna</creator><creator>Lindroos-Christensen, Josefine</creator><creator>Einwallner, Elisa</creator><creator>Husa, Julia</creator><creator>Witzeneder, Nadine</creator><creator>Rauscher, Sabine</creator><creator>Gröger, Marion</creator><creator>Derdak, Sophia</creator><creator>Mohr, Thomas</creator><creator>Sutterlüty, Hedwig</creator><creator>Klinglmüller, Florian</creator><creator>Wolkerstorfer, Silviya</creator><creator>Fondi, Martina</creator><creator>Hoermann, Gregor</creator><creator>Cao, Lei</creator><creator>Wagner, Oswald</creator><creator>Kiefer, Florian W.</creator><creator>Esterbauer, Harald</creator><creator>Bilban, Martin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7043-7142</orcidid></search><sort><creationdate>20210801</creationdate><title>LMO3 reprograms visceral adipocyte metabolism during obesity</title><author>Wagner, Gabriel ; Fenzl, Anna ; Lindroos-Christensen, Josefine ; Einwallner, Elisa ; Husa, Julia ; Witzeneder, Nadine ; Rauscher, Sabine ; Gröger, Marion ; Derdak, Sophia ; Mohr, Thomas ; Sutterlüty, Hedwig ; Klinglmüller, Florian ; Wolkerstorfer, Silviya ; Fondi, Martina ; Hoermann, Gregor ; Cao, Lei ; Wagner, Oswald ; Kiefer, Florian W. ; Esterbauer, Harald ; Bilban, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-13e03b433f5901fa7a1785cbd2cb73e3424b0901ab63291c8353420295e062d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3T3-L1 Cells</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Adiponectin</topic><topic>Adipose tissue (brown)</topic><topic>Animals</topic><topic>Bioenergetics</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body fat</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Disease Models, Animal</topic><topic>Disease Susceptibility</topic><topic>Energy Metabolism</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>High fat diet</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Internal Medicine</topic><topic>Intra-Abdominal Fat - cytology</topic><topic>Intra-Abdominal Fat - metabolism</topic><topic>LIM Domain Proteins - genetics</topic><topic>LIM Domain Proteins - metabolism</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Molecular Medicine</topic><topic>Obesity</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Phosphorylation</topic><topic>PPAR gamma - metabolism</topic><topic>Protein Binding</topic><topic>Risk factors</topic><topic>Signal transduction</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Gabriel</creatorcontrib><creatorcontrib>Fenzl, Anna</creatorcontrib><creatorcontrib>Lindroos-Christensen, Josefine</creatorcontrib><creatorcontrib>Einwallner, Elisa</creatorcontrib><creatorcontrib>Husa, Julia</creatorcontrib><creatorcontrib>Witzeneder, Nadine</creatorcontrib><creatorcontrib>Rauscher, Sabine</creatorcontrib><creatorcontrib>Gröger, Marion</creatorcontrib><creatorcontrib>Derdak, Sophia</creatorcontrib><creatorcontrib>Mohr, Thomas</creatorcontrib><creatorcontrib>Sutterlüty, Hedwig</creatorcontrib><creatorcontrib>Klinglmüller, Florian</creatorcontrib><creatorcontrib>Wolkerstorfer, Silviya</creatorcontrib><creatorcontrib>Fondi, Martina</creatorcontrib><creatorcontrib>Hoermann, Gregor</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><creatorcontrib>Wagner, Oswald</creatorcontrib><creatorcontrib>Kiefer, Florian W.</creatorcontrib><creatorcontrib>Esterbauer, Harald</creatorcontrib><creatorcontrib>Bilban, Martin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Gabriel</au><au>Fenzl, Anna</au><au>Lindroos-Christensen, Josefine</au><au>Einwallner, Elisa</au><au>Husa, Julia</au><au>Witzeneder, Nadine</au><au>Rauscher, Sabine</au><au>Gröger, Marion</au><au>Derdak, Sophia</au><au>Mohr, Thomas</au><au>Sutterlüty, Hedwig</au><au>Klinglmüller, Florian</au><au>Wolkerstorfer, Silviya</au><au>Fondi, Martina</au><au>Hoermann, Gregor</au><au>Cao, Lei</au><au>Wagner, Oswald</au><au>Kiefer, Florian W.</au><au>Esterbauer, Harald</au><au>Bilban, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMO3 reprograms visceral adipocyte metabolism during obesity</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>99</volume><issue>8</issue><spage>1151</spage><epage>1171</epage><pages>1151-1171</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34018016</pmid><doi>10.1007/s00109-021-02089-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7043-7142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-2716
ispartof Journal of molecular medicine (Berlin, Germany), 2021-08, Vol.99 (8), p.1151-1171
issn 0946-2716
1432-1440
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8313462
source MEDLINE; SpringerLink Journals
subjects 3T3-L1 Cells
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Adipocytes
Adipocytes - metabolism
Adiponectin
Adipose tissue (brown)
Animals
Bioenergetics
Biomarkers
Biomedical and Life Sciences
Biomedicine
Body fat
Diabetes mellitus (non-insulin dependent)
Disease Models, Animal
Disease Susceptibility
Energy Metabolism
Gene Expression
Gene Expression Profiling
Gene Expression Regulation
Glucose
Glucose - metabolism
Glucose Transporter Type 4 - genetics
Glucose Transporter Type 4 - metabolism
High fat diet
Human Genetics
Humans
Insulin
Insulin - metabolism
Internal Medicine
Intra-Abdominal Fat - cytology
Intra-Abdominal Fat - metabolism
LIM Domain Proteins - genetics
LIM Domain Proteins - metabolism
Metabolic syndrome
Metabolism
Mice
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Models, Biological
Molecular Medicine
Obesity
Obesity - etiology
Obesity - metabolism
Original
Original Article
Oxidation
Oxidation-Reduction
Oxidative Phosphorylation
PPAR gamma - metabolism
Protein Binding
Risk factors
Signal transduction
Transcription
title LMO3 reprograms visceral adipocyte metabolism during obesity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMO3%20reprograms%20visceral%20adipocyte%20metabolism%20during%20obesity&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Wagner,%20Gabriel&rft.date=2021-08-01&rft.volume=99&rft.issue=8&rft.spage=1151&rft.epage=1171&rft.pages=1151-1171&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-021-02089-9&rft_dat=%3Cproquest_pubme%3E2531215696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555232250&rft_id=info:pmid/34018016&rfr_iscdi=true