African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques
Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro a...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2021-07, Vol.95 (16), p.e0222020-e0222020, Article 02220 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0222020 |
---|---|
container_issue | 16 |
container_start_page | e0222020 |
container_title | Journal of virology |
container_volume | 95 |
creator | Crooks, Chelsea M. Weiler, Andrea M. Rybarczyk, Sierra L. Bliss, Mason Jaeger, Anna S. Murphy, Megan E. Simmons, Heather A. Mejia, Andres Fritsch, Michael K. Hayes, Jennifer M. Eickhoff, Jens C. Mitzey, Ann M. Razo, Elaina Braun, Katarina M. Brown, Elizabeth A. Yamamoto, Keisuke Shepherd, Phoenix M. Possell, Amber Weaver, Kara Antony, Kathleen M. Morgan, Terry K. Zeng, Xiankun Dudley, Dawn M. Peterson, Eric Schultz-Darken, Nancy O'Connor, David H. Mohr, Emma L. Golos, Thaddeus G. Aliota, Matthew T. Friedrich, Thomas C. |
description | Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants.
IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and the |
doi_str_mv | 10.1128/JVI.02220-20 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536487879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-b39cde1dffa472e671c0d421471f8ddf5c64a4cafe04aaa2169e84a51598ab673</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0Eokvhxhn5CIIU23ES54JULRQWbQWqoEJcrFlnvHVJ7MVOQP33eHfLCg5InDye-fTseY-Qx5ydcC7Uy_eXixMmhGCFYHfIjLNWFVXF5V0yY7lfVKX6ckQepHTNGJeylvfJUSlZU0tVzUg8tdEZ8MXSeYQ10q_uG9BLF6dEL3DT59nogqevbzwMziQKvqPnMGL00BdnOEJPFz5fLRjMlUWz452nHyOuPfiRXlxhynLnYOD7hOkhuWehT_jo9jwmn8_efJq_K5Yf3i7mp8sCJFdjsSpb0yHvrAXZCKwbblgnBZcNt6rrbGVqCdKARSYBQPC6RSWh4lWrYFU35TF5tdfdTKsBO4N-jNDrTXQDxBsdwOm_J95d6XX4oVWZfW1EFnh6KxDD9uOjHlwy2PfgMUxJi6rMJjaqaTP6Yo-aGFKKaA_PcKa3Mekck97FpAXL-LM9DmkQ-jpMWzfTv9gnf65xEP6dYQae74GfuAo2GYfe4AFjjDVM1WXb5optafX_9NyNu_jnYfJj-QuIW72D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536487879</pqid></control><display><type>article</type><title>African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Crooks, Chelsea M. ; Weiler, Andrea M. ; Rybarczyk, Sierra L. ; Bliss, Mason ; Jaeger, Anna S. ; Murphy, Megan E. ; Simmons, Heather A. ; Mejia, Andres ; Fritsch, Michael K. ; Hayes, Jennifer M. ; Eickhoff, Jens C. ; Mitzey, Ann M. ; Razo, Elaina ; Braun, Katarina M. ; Brown, Elizabeth A. ; Yamamoto, Keisuke ; Shepherd, Phoenix M. ; Possell, Amber ; Weaver, Kara ; Antony, Kathleen M. ; Morgan, Terry K. ; Zeng, Xiankun ; Dudley, Dawn M. ; Peterson, Eric ; Schultz-Darken, Nancy ; O'Connor, David H. ; Mohr, Emma L. ; Golos, Thaddeus G. ; Aliota, Matthew T. ; Friedrich, Thomas C.</creator><contributor>Heise, Mark T ; Heise, Mark T.</contributor><creatorcontrib>Crooks, Chelsea M. ; Weiler, Andrea M. ; Rybarczyk, Sierra L. ; Bliss, Mason ; Jaeger, Anna S. ; Murphy, Megan E. ; Simmons, Heather A. ; Mejia, Andres ; Fritsch, Michael K. ; Hayes, Jennifer M. ; Eickhoff, Jens C. ; Mitzey, Ann M. ; Razo, Elaina ; Braun, Katarina M. ; Brown, Elizabeth A. ; Yamamoto, Keisuke ; Shepherd, Phoenix M. ; Possell, Amber ; Weaver, Kara ; Antony, Kathleen M. ; Morgan, Terry K. ; Zeng, Xiankun ; Dudley, Dawn M. ; Peterson, Eric ; Schultz-Darken, Nancy ; O'Connor, David H. ; Mohr, Emma L. ; Golos, Thaddeus G. ; Aliota, Matthew T. ; Friedrich, Thomas C. ; Heise, Mark T ; Heise, Mark T.</creatorcontrib><description>Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants.
IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.</description><identifier>ISSN: 0022-538X</identifier><identifier>EISSN: 1098-5514</identifier><identifier>DOI: 10.1128/JVI.02220-20</identifier><identifier>PMID: 34076485</identifier><language>eng</language><publisher>WASHINGTON: Amer Soc Microbiology</publisher><subject>Animals ; Antibodies, Neutralizing - blood ; Antibodies, Viral - blood ; Disease Models, Animal ; Female ; Fetal Development ; Kinetics ; Life Sciences & Biomedicine ; Macaca mulatta ; Pathogenesis and Immunity ; Placenta - pathology ; Placenta - virology ; Pregnancy ; Pregnancy Complications, Infectious - virology ; Science & Technology ; Virology ; Virus Replication ; Zika Virus - classification ; Zika Virus - immunology ; Zika Virus - physiology ; Zika Virus Infection - virology</subject><ispartof>Journal of virology, 2021-07, Vol.95 (16), p.e0222020-e0222020, Article 02220</ispartof><rights>Copyright © 2021 Crooks et al.</rights><rights>Copyright © 2021 Crooks et al. 2021 Crooks et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000708639900005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a418t-b39cde1dffa472e671c0d421471f8ddf5c64a4cafe04aaa2169e84a51598ab673</citedby><cites>FETCH-LOGICAL-a418t-b39cde1dffa472e671c0d421471f8ddf5c64a4cafe04aaa2169e84a51598ab673</cites><orcidid>0000-0003-3874-4577 ; 0000-0002-6902-9149 ; 0000-0001-9831-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34076485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Heise, Mark T</contributor><contributor>Heise, Mark T.</contributor><creatorcontrib>Crooks, Chelsea M.</creatorcontrib><creatorcontrib>Weiler, Andrea M.</creatorcontrib><creatorcontrib>Rybarczyk, Sierra L.</creatorcontrib><creatorcontrib>Bliss, Mason</creatorcontrib><creatorcontrib>Jaeger, Anna S.</creatorcontrib><creatorcontrib>Murphy, Megan E.</creatorcontrib><creatorcontrib>Simmons, Heather A.</creatorcontrib><creatorcontrib>Mejia, Andres</creatorcontrib><creatorcontrib>Fritsch, Michael K.</creatorcontrib><creatorcontrib>Hayes, Jennifer M.</creatorcontrib><creatorcontrib>Eickhoff, Jens C.</creatorcontrib><creatorcontrib>Mitzey, Ann M.</creatorcontrib><creatorcontrib>Razo, Elaina</creatorcontrib><creatorcontrib>Braun, Katarina M.</creatorcontrib><creatorcontrib>Brown, Elizabeth A.</creatorcontrib><creatorcontrib>Yamamoto, Keisuke</creatorcontrib><creatorcontrib>Shepherd, Phoenix M.</creatorcontrib><creatorcontrib>Possell, Amber</creatorcontrib><creatorcontrib>Weaver, Kara</creatorcontrib><creatorcontrib>Antony, Kathleen M.</creatorcontrib><creatorcontrib>Morgan, Terry K.</creatorcontrib><creatorcontrib>Zeng, Xiankun</creatorcontrib><creatorcontrib>Dudley, Dawn M.</creatorcontrib><creatorcontrib>Peterson, Eric</creatorcontrib><creatorcontrib>Schultz-Darken, Nancy</creatorcontrib><creatorcontrib>O'Connor, David H.</creatorcontrib><creatorcontrib>Mohr, Emma L.</creatorcontrib><creatorcontrib>Golos, Thaddeus G.</creatorcontrib><creatorcontrib>Aliota, Matthew T.</creatorcontrib><creatorcontrib>Friedrich, Thomas C.</creatorcontrib><title>African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques</title><title>Journal of virology</title><addtitle>J VIROL</addtitle><addtitle>J Virol</addtitle><addtitle>J Virol</addtitle><description>Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants.
IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.</description><subject>Animals</subject><subject>Antibodies, Neutralizing - blood</subject><subject>Antibodies, Viral - blood</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Fetal Development</subject><subject>Kinetics</subject><subject>Life Sciences & Biomedicine</subject><subject>Macaca mulatta</subject><subject>Pathogenesis and Immunity</subject><subject>Placenta - pathology</subject><subject>Placenta - virology</subject><subject>Pregnancy</subject><subject>Pregnancy Complications, Infectious - virology</subject><subject>Science & Technology</subject><subject>Virology</subject><subject>Virus Replication</subject><subject>Zika Virus - classification</subject><subject>Zika Virus - immunology</subject><subject>Zika Virus - physiology</subject><subject>Zika Virus Infection - virology</subject><issn>0022-538X</issn><issn>1098-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS0Eokvhxhn5CIIU23ES54JULRQWbQWqoEJcrFlnvHVJ7MVOQP33eHfLCg5InDye-fTseY-Qx5ydcC7Uy_eXixMmhGCFYHfIjLNWFVXF5V0yY7lfVKX6ckQepHTNGJeylvfJUSlZU0tVzUg8tdEZ8MXSeYQ10q_uG9BLF6dEL3DT59nogqevbzwMziQKvqPnMGL00BdnOEJPFz5fLRjMlUWz452nHyOuPfiRXlxhynLnYOD7hOkhuWehT_jo9jwmn8_efJq_K5Yf3i7mp8sCJFdjsSpb0yHvrAXZCKwbblgnBZcNt6rrbGVqCdKARSYBQPC6RSWh4lWrYFU35TF5tdfdTKsBO4N-jNDrTXQDxBsdwOm_J95d6XX4oVWZfW1EFnh6KxDD9uOjHlwy2PfgMUxJi6rMJjaqaTP6Yo-aGFKKaA_PcKa3Mekck97FpAXL-LM9DmkQ-jpMWzfTv9gnf65xEP6dYQae74GfuAo2GYfe4AFjjDVM1WXb5optafX_9NyNu_jnYfJj-QuIW72D</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Crooks, Chelsea M.</creator><creator>Weiler, Andrea M.</creator><creator>Rybarczyk, Sierra L.</creator><creator>Bliss, Mason</creator><creator>Jaeger, Anna S.</creator><creator>Murphy, Megan E.</creator><creator>Simmons, Heather A.</creator><creator>Mejia, Andres</creator><creator>Fritsch, Michael K.</creator><creator>Hayes, Jennifer M.</creator><creator>Eickhoff, Jens C.</creator><creator>Mitzey, Ann M.</creator><creator>Razo, Elaina</creator><creator>Braun, Katarina M.</creator><creator>Brown, Elizabeth A.</creator><creator>Yamamoto, Keisuke</creator><creator>Shepherd, Phoenix M.</creator><creator>Possell, Amber</creator><creator>Weaver, Kara</creator><creator>Antony, Kathleen M.</creator><creator>Morgan, Terry K.</creator><creator>Zeng, Xiankun</creator><creator>Dudley, Dawn M.</creator><creator>Peterson, Eric</creator><creator>Schultz-Darken, Nancy</creator><creator>O'Connor, David H.</creator><creator>Mohr, Emma L.</creator><creator>Golos, Thaddeus G.</creator><creator>Aliota, Matthew T.</creator><creator>Friedrich, Thomas C.</creator><general>Amer Soc Microbiology</general><general>American Society for Microbiology</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3874-4577</orcidid><orcidid>https://orcid.org/0000-0002-6902-9149</orcidid><orcidid>https://orcid.org/0000-0001-9831-6895</orcidid></search><sort><creationdate>20210726</creationdate><title>African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques</title><author>Crooks, Chelsea M. ; Weiler, Andrea M. ; Rybarczyk, Sierra L. ; Bliss, Mason ; Jaeger, Anna S. ; Murphy, Megan E. ; Simmons, Heather A. ; Mejia, Andres ; Fritsch, Michael K. ; Hayes, Jennifer M. ; Eickhoff, Jens C. ; Mitzey, Ann M. ; Razo, Elaina ; Braun, Katarina M. ; Brown, Elizabeth A. ; Yamamoto, Keisuke ; Shepherd, Phoenix M. ; Possell, Amber ; Weaver, Kara ; Antony, Kathleen M. ; Morgan, Terry K. ; Zeng, Xiankun ; Dudley, Dawn M. ; Peterson, Eric ; Schultz-Darken, Nancy ; O'Connor, David H. ; Mohr, Emma L. ; Golos, Thaddeus G. ; Aliota, Matthew T. ; Friedrich, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-b39cde1dffa472e671c0d421471f8ddf5c64a4cafe04aaa2169e84a51598ab673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antibodies, Neutralizing - blood</topic><topic>Antibodies, Viral - blood</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Fetal Development</topic><topic>Kinetics</topic><topic>Life Sciences & Biomedicine</topic><topic>Macaca mulatta</topic><topic>Pathogenesis and Immunity</topic><topic>Placenta - pathology</topic><topic>Placenta - virology</topic><topic>Pregnancy</topic><topic>Pregnancy Complications, Infectious - virology</topic><topic>Science & Technology</topic><topic>Virology</topic><topic>Virus Replication</topic><topic>Zika Virus - classification</topic><topic>Zika Virus - immunology</topic><topic>Zika Virus - physiology</topic><topic>Zika Virus Infection - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crooks, Chelsea M.</creatorcontrib><creatorcontrib>Weiler, Andrea M.</creatorcontrib><creatorcontrib>Rybarczyk, Sierra L.</creatorcontrib><creatorcontrib>Bliss, Mason</creatorcontrib><creatorcontrib>Jaeger, Anna S.</creatorcontrib><creatorcontrib>Murphy, Megan E.</creatorcontrib><creatorcontrib>Simmons, Heather A.</creatorcontrib><creatorcontrib>Mejia, Andres</creatorcontrib><creatorcontrib>Fritsch, Michael K.</creatorcontrib><creatorcontrib>Hayes, Jennifer M.</creatorcontrib><creatorcontrib>Eickhoff, Jens C.</creatorcontrib><creatorcontrib>Mitzey, Ann M.</creatorcontrib><creatorcontrib>Razo, Elaina</creatorcontrib><creatorcontrib>Braun, Katarina M.</creatorcontrib><creatorcontrib>Brown, Elizabeth A.</creatorcontrib><creatorcontrib>Yamamoto, Keisuke</creatorcontrib><creatorcontrib>Shepherd, Phoenix M.</creatorcontrib><creatorcontrib>Possell, Amber</creatorcontrib><creatorcontrib>Weaver, Kara</creatorcontrib><creatorcontrib>Antony, Kathleen M.</creatorcontrib><creatorcontrib>Morgan, Terry K.</creatorcontrib><creatorcontrib>Zeng, Xiankun</creatorcontrib><creatorcontrib>Dudley, Dawn M.</creatorcontrib><creatorcontrib>Peterson, Eric</creatorcontrib><creatorcontrib>Schultz-Darken, Nancy</creatorcontrib><creatorcontrib>O'Connor, David H.</creatorcontrib><creatorcontrib>Mohr, Emma L.</creatorcontrib><creatorcontrib>Golos, Thaddeus G.</creatorcontrib><creatorcontrib>Aliota, Matthew T.</creatorcontrib><creatorcontrib>Friedrich, Thomas C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crooks, Chelsea M.</au><au>Weiler, Andrea M.</au><au>Rybarczyk, Sierra L.</au><au>Bliss, Mason</au><au>Jaeger, Anna S.</au><au>Murphy, Megan E.</au><au>Simmons, Heather A.</au><au>Mejia, Andres</au><au>Fritsch, Michael K.</au><au>Hayes, Jennifer M.</au><au>Eickhoff, Jens C.</au><au>Mitzey, Ann M.</au><au>Razo, Elaina</au><au>Braun, Katarina M.</au><au>Brown, Elizabeth A.</au><au>Yamamoto, Keisuke</au><au>Shepherd, Phoenix M.</au><au>Possell, Amber</au><au>Weaver, Kara</au><au>Antony, Kathleen M.</au><au>Morgan, Terry K.</au><au>Zeng, Xiankun</au><au>Dudley, Dawn M.</au><au>Peterson, Eric</au><au>Schultz-Darken, Nancy</au><au>O'Connor, David H.</au><au>Mohr, Emma L.</au><au>Golos, Thaddeus G.</au><au>Aliota, Matthew T.</au><au>Friedrich, Thomas C.</au><au>Heise, Mark T</au><au>Heise, Mark T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques</atitle><jtitle>Journal of virology</jtitle><stitle>J VIROL</stitle><stitle>J Virol</stitle><addtitle>J Virol</addtitle><date>2021-07-26</date><risdate>2021</risdate><volume>95</volume><issue>16</issue><spage>e0222020</spage><epage>e0222020</epage><pages>e0222020-e0222020</pages><artnum>02220</artnum><issn>0022-538X</issn><eissn>1098-5514</eissn><abstract>Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants.
IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.</abstract><cop>WASHINGTON</cop><pub>Amer Soc Microbiology</pub><pmid>34076485</pmid><doi>10.1128/JVI.02220-20</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3874-4577</orcidid><orcidid>https://orcid.org/0000-0002-6902-9149</orcidid><orcidid>https://orcid.org/0000-0001-9831-6895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-538X |
ispartof | Journal of virology, 2021-07, Vol.95 (16), p.e0222020-e0222020, Article 02220 |
issn | 0022-538X 1098-5514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312872 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Antibodies, Neutralizing - blood Antibodies, Viral - blood Disease Models, Animal Female Fetal Development Kinetics Life Sciences & Biomedicine Macaca mulatta Pathogenesis and Immunity Placenta - pathology Placenta - virology Pregnancy Pregnancy Complications, Infectious - virology Science & Technology Virology Virus Replication Zika Virus - classification Zika Virus - immunology Zika Virus - physiology Zika Virus Infection - virology |
title | African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=African-Lineage%20Zika%20Virus%20Replication%20Dynamics%20and%20Maternal-Fetal%20Interface%20Infection%20in%20Pregnant%20Rhesus%20Macaques&rft.jtitle=Journal%20of%20virology&rft.au=Crooks,%20Chelsea%20M.&rft.date=2021-07-26&rft.volume=95&rft.issue=16&rft.spage=e0222020&rft.epage=e0222020&rft.pages=e0222020-e0222020&rft.artnum=02220&rft.issn=0022-538X&rft.eissn=1098-5514&rft_id=info:doi/10.1128/JVI.02220-20&rft_dat=%3Cproquest_pubme%3E2536487879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536487879&rft_id=info:pmid/34076485&rfr_iscdi=true |