How Hydrologic Connectivity Regulates Water Quality in River Corridors

Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2019-04, Vol.55 (2), p.369-381
Hauptverfasser: Harvey, Jud, Gomez‐Velez, Jesus, Schmadel, Noah, Scott, Durelle, Boyer, Elizabeth, Alexander, Richard, Eng, Ken, Golden, Heather, Kettner, Albert, Konrad, Chris, Moore, Richard, Pizzuto, Jim, Schwarz, Greg, Soulsby, Chris, Choi, Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 2
container_start_page 369
container_title Journal of the American Water Resources Association
container_volume 55
creator Harvey, Jud
Gomez‐Velez, Jesus
Schmadel, Noah
Scott, Durelle
Boyer, Elizabeth
Alexander, Richard
Eng, Ken
Golden, Heather
Kettner, Albert
Konrad, Chris
Moore, Richard
Pizzuto, Jim
Schwarz, Greg
Soulsby, Chris
Choi, Jay
description Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors. Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.
doi_str_mv 10.1111/1752-1688.12691
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555965748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</originalsourceid><addsrcrecordid>eNqFUU1LAzEUDKJYv85eF7x42ZrP_bgIUqxVCmJR9BbS7EuNbDea7Lb035u1IujFHF4ek5nh5Q1CpwQPSTwXJBc0JVlRDAnNSrKDDn6Q3djjkqU85y8DdBjCG8ZEkILtowHjjGSUlwdoPHHrZLKpvKvdwupk5JoGdGtXtt0kM1h0tWohJM-x-uShU3WP2yaZ2VUERs57WzkfjtGeUXWAk-_7CD2Nrx9Hk3R6f3M7upqmmnNB0pxyA1RnFa9KpoADxiqfV0LRQlWGm1IA51nslY6zgpmDNpjNc6ypUcYQdoQut77v3XwJlYam9aqW794uld9Ip6z8_dLYV7lwK1mwuCBaRIPzbwPvPjoIrVzaoKGuVQOuC5IKIcpM5Lynnv2hvrnON_F7klLM4i5jjayLLUt7F4IH8zMMwbLPSPaJyD4R-ZVRVGRbxdrWsPmPLu-unmdb4Sd4a5O6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203151203</pqid></control><display><type>article</type><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><source>Wiley Online Library All Journals</source><creator>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</creator><creatorcontrib>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</creatorcontrib><description>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors. Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/1752-1688.12691</identifier><identifier>PMID: 34316249</identifier><language>eng</language><publisher>Middleburg: Blackwell Publishing Ltd</publisher><subject>Biogeochemistry ; Channel storage ; Clean Water Rule ; Contaminants ; Corridors ; Denitrification ; Downstream ; Exchanging ; Floodplains ; Fluid dynamics ; hydrologic connectivity ; Hydrology ; hyporheic flow ; Hyporheic zones ; Reactive processing ; Residence time ; River beds ; river corridor ; River water ; Riverbeds ; Rivers ; Sediment ; Sediments ; Streams ; Turbulent mixing ; Water pollution ; Water quality ; Water storage</subject><ispartof>Journal of the American Water Resources Association, 2019-04, Vol.55 (2), p.369-381</ispartof><rights>2018 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2019 American Water Resources Association</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</citedby><cites>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</cites><orcidid>0000-0002-2654-9873 ; 0000-0003-1276-481X ; 0000-0001-9166-0626 ; 0000-0002-5792-789X ; 0000-0001-6838-5849 ; 0000-0002-2046-1694 ; 0000-0002-7191-6521 ; 0000-0001-9066-3171 ; 0000-0002-9239-4566 ; 0000-0001-5501-9444 ; 0000-0002-7354-547X ; 0000-0001-8045-5926 ; 0000-0001-6910-2118 ; 0000-0003-4369-4201 ; 0000-0002-7978-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1752-1688.12691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1752-1688.12691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Harvey, Jud</creatorcontrib><creatorcontrib>Gomez‐Velez, Jesus</creatorcontrib><creatorcontrib>Schmadel, Noah</creatorcontrib><creatorcontrib>Scott, Durelle</creatorcontrib><creatorcontrib>Boyer, Elizabeth</creatorcontrib><creatorcontrib>Alexander, Richard</creatorcontrib><creatorcontrib>Eng, Ken</creatorcontrib><creatorcontrib>Golden, Heather</creatorcontrib><creatorcontrib>Kettner, Albert</creatorcontrib><creatorcontrib>Konrad, Chris</creatorcontrib><creatorcontrib>Moore, Richard</creatorcontrib><creatorcontrib>Pizzuto, Jim</creatorcontrib><creatorcontrib>Schwarz, Greg</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><creatorcontrib>Choi, Jay</creatorcontrib><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><title>Journal of the American Water Resources Association</title><description>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors. Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</description><subject>Biogeochemistry</subject><subject>Channel storage</subject><subject>Clean Water Rule</subject><subject>Contaminants</subject><subject>Corridors</subject><subject>Denitrification</subject><subject>Downstream</subject><subject>Exchanging</subject><subject>Floodplains</subject><subject>Fluid dynamics</subject><subject>hydrologic connectivity</subject><subject>Hydrology</subject><subject>hyporheic flow</subject><subject>Hyporheic zones</subject><subject>Reactive processing</subject><subject>Residence time</subject><subject>River beds</subject><subject>river corridor</subject><subject>River water</subject><subject>Riverbeds</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Streams</subject><subject>Turbulent mixing</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water storage</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LAzEUDKJYv85eF7x42ZrP_bgIUqxVCmJR9BbS7EuNbDea7Lb035u1IujFHF4ek5nh5Q1CpwQPSTwXJBc0JVlRDAnNSrKDDn6Q3djjkqU85y8DdBjCG8ZEkILtowHjjGSUlwdoPHHrZLKpvKvdwupk5JoGdGtXtt0kM1h0tWohJM-x-uShU3WP2yaZ2VUERs57WzkfjtGeUXWAk-_7CD2Nrx9Hk3R6f3M7upqmmnNB0pxyA1RnFa9KpoADxiqfV0LRQlWGm1IA51nslY6zgpmDNpjNc6ypUcYQdoQut77v3XwJlYam9aqW794uld9Ip6z8_dLYV7lwK1mwuCBaRIPzbwPvPjoIrVzaoKGuVQOuC5IKIcpM5Lynnv2hvrnON_F7klLM4i5jjayLLUt7F4IH8zMMwbLPSPaJyD4R-ZVRVGRbxdrWsPmPLu-unmdb4Sd4a5O6</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Harvey, Jud</creator><creator>Gomez‐Velez, Jesus</creator><creator>Schmadel, Noah</creator><creator>Scott, Durelle</creator><creator>Boyer, Elizabeth</creator><creator>Alexander, Richard</creator><creator>Eng, Ken</creator><creator>Golden, Heather</creator><creator>Kettner, Albert</creator><creator>Konrad, Chris</creator><creator>Moore, Richard</creator><creator>Pizzuto, Jim</creator><creator>Schwarz, Greg</creator><creator>Soulsby, Chris</creator><creator>Choi, Jay</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2654-9873</orcidid><orcidid>https://orcid.org/0000-0003-1276-481X</orcidid><orcidid>https://orcid.org/0000-0001-9166-0626</orcidid><orcidid>https://orcid.org/0000-0002-5792-789X</orcidid><orcidid>https://orcid.org/0000-0001-6838-5849</orcidid><orcidid>https://orcid.org/0000-0002-2046-1694</orcidid><orcidid>https://orcid.org/0000-0002-7191-6521</orcidid><orcidid>https://orcid.org/0000-0001-9066-3171</orcidid><orcidid>https://orcid.org/0000-0002-9239-4566</orcidid><orcidid>https://orcid.org/0000-0001-5501-9444</orcidid><orcidid>https://orcid.org/0000-0002-7354-547X</orcidid><orcidid>https://orcid.org/0000-0001-8045-5926</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid><orcidid>https://orcid.org/0000-0003-4369-4201</orcidid><orcidid>https://orcid.org/0000-0002-7978-7322</orcidid></search><sort><creationdate>201904</creationdate><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><author>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biogeochemistry</topic><topic>Channel storage</topic><topic>Clean Water Rule</topic><topic>Contaminants</topic><topic>Corridors</topic><topic>Denitrification</topic><topic>Downstream</topic><topic>Exchanging</topic><topic>Floodplains</topic><topic>Fluid dynamics</topic><topic>hydrologic connectivity</topic><topic>Hydrology</topic><topic>hyporheic flow</topic><topic>Hyporheic zones</topic><topic>Reactive processing</topic><topic>Residence time</topic><topic>River beds</topic><topic>river corridor</topic><topic>River water</topic><topic>Riverbeds</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Streams</topic><topic>Turbulent mixing</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water storage</topic><toplevel>online_resources</toplevel><creatorcontrib>Harvey, Jud</creatorcontrib><creatorcontrib>Gomez‐Velez, Jesus</creatorcontrib><creatorcontrib>Schmadel, Noah</creatorcontrib><creatorcontrib>Scott, Durelle</creatorcontrib><creatorcontrib>Boyer, Elizabeth</creatorcontrib><creatorcontrib>Alexander, Richard</creatorcontrib><creatorcontrib>Eng, Ken</creatorcontrib><creatorcontrib>Golden, Heather</creatorcontrib><creatorcontrib>Kettner, Albert</creatorcontrib><creatorcontrib>Konrad, Chris</creatorcontrib><creatorcontrib>Moore, Richard</creatorcontrib><creatorcontrib>Pizzuto, Jim</creatorcontrib><creatorcontrib>Schwarz, Greg</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><creatorcontrib>Choi, Jay</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, Jud</au><au>Gomez‐Velez, Jesus</au><au>Schmadel, Noah</au><au>Scott, Durelle</au><au>Boyer, Elizabeth</au><au>Alexander, Richard</au><au>Eng, Ken</au><au>Golden, Heather</au><au>Kettner, Albert</au><au>Konrad, Chris</au><au>Moore, Richard</au><au>Pizzuto, Jim</au><au>Schwarz, Greg</au><au>Soulsby, Chris</au><au>Choi, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Hydrologic Connectivity Regulates Water Quality in River Corridors</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2019-04</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>369</spage><epage>381</epage><pages>369-381</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><abstract>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors. Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</abstract><cop>Middleburg</cop><pub>Blackwell Publishing Ltd</pub><pmid>34316249</pmid><doi>10.1111/1752-1688.12691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2654-9873</orcidid><orcidid>https://orcid.org/0000-0003-1276-481X</orcidid><orcidid>https://orcid.org/0000-0001-9166-0626</orcidid><orcidid>https://orcid.org/0000-0002-5792-789X</orcidid><orcidid>https://orcid.org/0000-0001-6838-5849</orcidid><orcidid>https://orcid.org/0000-0002-2046-1694</orcidid><orcidid>https://orcid.org/0000-0002-7191-6521</orcidid><orcidid>https://orcid.org/0000-0001-9066-3171</orcidid><orcidid>https://orcid.org/0000-0002-9239-4566</orcidid><orcidid>https://orcid.org/0000-0001-5501-9444</orcidid><orcidid>https://orcid.org/0000-0002-7354-547X</orcidid><orcidid>https://orcid.org/0000-0001-8045-5926</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid><orcidid>https://orcid.org/0000-0003-4369-4201</orcidid><orcidid>https://orcid.org/0000-0002-7978-7322</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-474X
ispartof Journal of the American Water Resources Association, 2019-04, Vol.55 (2), p.369-381
issn 1093-474X
1752-1688
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312628
source Wiley Online Library All Journals
subjects Biogeochemistry
Channel storage
Clean Water Rule
Contaminants
Corridors
Denitrification
Downstream
Exchanging
Floodplains
Fluid dynamics
hydrologic connectivity
Hydrology
hyporheic flow
Hyporheic zones
Reactive processing
Residence time
River beds
river corridor
River water
Riverbeds
Rivers
Sediment
Sediments
Streams
Turbulent mixing
Water pollution
Water quality
Water storage
title How Hydrologic Connectivity Regulates Water Quality in River Corridors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Hydrologic%20Connectivity%20Regulates%20Water%20Quality%20in%20River%20Corridors&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Harvey,%20Jud&rft.date=2019-04&rft.volume=55&rft.issue=2&rft.spage=369&rft.epage=381&rft.pages=369-381&rft.issn=1093-474X&rft.eissn=1752-1688&rft_id=info:doi/10.1111/1752-1688.12691&rft_dat=%3Cproquest_pubme%3E2555965748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203151203&rft_id=info:pmid/34316249&rfr_iscdi=true