How Hydrologic Connectivity Regulates Water Quality in River Corridors
Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and...
Gespeichert in:
Veröffentlicht in: | Journal of the American Water Resources Association 2019-04, Vol.55 (2), p.369-381 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 2 |
container_start_page | 369 |
container_title | Journal of the American Water Resources Association |
container_volume | 55 |
creator | Harvey, Jud Gomez‐Velez, Jesus Schmadel, Noah Scott, Durelle Boyer, Elizabeth Alexander, Richard Eng, Ken Golden, Heather Kettner, Albert Konrad, Chris Moore, Richard Pizzuto, Jim Schwarz, Greg Soulsby, Chris Choi, Jay |
description | Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.
Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality. |
doi_str_mv | 10.1111/1752-1688.12691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555965748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</originalsourceid><addsrcrecordid>eNqFUU1LAzEUDKJYv85eF7x42ZrP_bgIUqxVCmJR9BbS7EuNbDea7Lb035u1IujFHF4ek5nh5Q1CpwQPSTwXJBc0JVlRDAnNSrKDDn6Q3djjkqU85y8DdBjCG8ZEkILtowHjjGSUlwdoPHHrZLKpvKvdwupk5JoGdGtXtt0kM1h0tWohJM-x-uShU3WP2yaZ2VUERs57WzkfjtGeUXWAk-_7CD2Nrx9Hk3R6f3M7upqmmnNB0pxyA1RnFa9KpoADxiqfV0LRQlWGm1IA51nslY6zgpmDNpjNc6ypUcYQdoQut77v3XwJlYam9aqW794uld9Ip6z8_dLYV7lwK1mwuCBaRIPzbwPvPjoIrVzaoKGuVQOuC5IKIcpM5Lynnv2hvrnON_F7klLM4i5jjayLLUt7F4IH8zMMwbLPSPaJyD4R-ZVRVGRbxdrWsPmPLu-unmdb4Sd4a5O6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203151203</pqid></control><display><type>article</type><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><source>Wiley Online Library All Journals</source><creator>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</creator><creatorcontrib>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</creatorcontrib><description>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.
Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/1752-1688.12691</identifier><identifier>PMID: 34316249</identifier><language>eng</language><publisher>Middleburg: Blackwell Publishing Ltd</publisher><subject>Biogeochemistry ; Channel storage ; Clean Water Rule ; Contaminants ; Corridors ; Denitrification ; Downstream ; Exchanging ; Floodplains ; Fluid dynamics ; hydrologic connectivity ; Hydrology ; hyporheic flow ; Hyporheic zones ; Reactive processing ; Residence time ; River beds ; river corridor ; River water ; Riverbeds ; Rivers ; Sediment ; Sediments ; Streams ; Turbulent mixing ; Water pollution ; Water quality ; Water storage</subject><ispartof>Journal of the American Water Resources Association, 2019-04, Vol.55 (2), p.369-381</ispartof><rights>2018 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA</rights><rights>2019 American Water Resources Association</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</citedby><cites>FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</cites><orcidid>0000-0002-2654-9873 ; 0000-0003-1276-481X ; 0000-0001-9166-0626 ; 0000-0002-5792-789X ; 0000-0001-6838-5849 ; 0000-0002-2046-1694 ; 0000-0002-7191-6521 ; 0000-0001-9066-3171 ; 0000-0002-9239-4566 ; 0000-0001-5501-9444 ; 0000-0002-7354-547X ; 0000-0001-8045-5926 ; 0000-0001-6910-2118 ; 0000-0003-4369-4201 ; 0000-0002-7978-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1752-1688.12691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1752-1688.12691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Harvey, Jud</creatorcontrib><creatorcontrib>Gomez‐Velez, Jesus</creatorcontrib><creatorcontrib>Schmadel, Noah</creatorcontrib><creatorcontrib>Scott, Durelle</creatorcontrib><creatorcontrib>Boyer, Elizabeth</creatorcontrib><creatorcontrib>Alexander, Richard</creatorcontrib><creatorcontrib>Eng, Ken</creatorcontrib><creatorcontrib>Golden, Heather</creatorcontrib><creatorcontrib>Kettner, Albert</creatorcontrib><creatorcontrib>Konrad, Chris</creatorcontrib><creatorcontrib>Moore, Richard</creatorcontrib><creatorcontrib>Pizzuto, Jim</creatorcontrib><creatorcontrib>Schwarz, Greg</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><creatorcontrib>Choi, Jay</creatorcontrib><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><title>Journal of the American Water Resources Association</title><description>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.
Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</description><subject>Biogeochemistry</subject><subject>Channel storage</subject><subject>Clean Water Rule</subject><subject>Contaminants</subject><subject>Corridors</subject><subject>Denitrification</subject><subject>Downstream</subject><subject>Exchanging</subject><subject>Floodplains</subject><subject>Fluid dynamics</subject><subject>hydrologic connectivity</subject><subject>Hydrology</subject><subject>hyporheic flow</subject><subject>Hyporheic zones</subject><subject>Reactive processing</subject><subject>Residence time</subject><subject>River beds</subject><subject>river corridor</subject><subject>River water</subject><subject>Riverbeds</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Streams</subject><subject>Turbulent mixing</subject><subject>Water pollution</subject><subject>Water quality</subject><subject>Water storage</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LAzEUDKJYv85eF7x42ZrP_bgIUqxVCmJR9BbS7EuNbDea7Lb035u1IujFHF4ek5nh5Q1CpwQPSTwXJBc0JVlRDAnNSrKDDn6Q3djjkqU85y8DdBjCG8ZEkILtowHjjGSUlwdoPHHrZLKpvKvdwupk5JoGdGtXtt0kM1h0tWohJM-x-uShU3WP2yaZ2VUERs57WzkfjtGeUXWAk-_7CD2Nrx9Hk3R6f3M7upqmmnNB0pxyA1RnFa9KpoADxiqfV0LRQlWGm1IA51nslY6zgpmDNpjNc6ypUcYQdoQut77v3XwJlYam9aqW794uld9Ip6z8_dLYV7lwK1mwuCBaRIPzbwPvPjoIrVzaoKGuVQOuC5IKIcpM5Lynnv2hvrnON_F7klLM4i5jjayLLUt7F4IH8zMMwbLPSPaJyD4R-ZVRVGRbxdrWsPmPLu-unmdb4Sd4a5O6</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Harvey, Jud</creator><creator>Gomez‐Velez, Jesus</creator><creator>Schmadel, Noah</creator><creator>Scott, Durelle</creator><creator>Boyer, Elizabeth</creator><creator>Alexander, Richard</creator><creator>Eng, Ken</creator><creator>Golden, Heather</creator><creator>Kettner, Albert</creator><creator>Konrad, Chris</creator><creator>Moore, Richard</creator><creator>Pizzuto, Jim</creator><creator>Schwarz, Greg</creator><creator>Soulsby, Chris</creator><creator>Choi, Jay</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2654-9873</orcidid><orcidid>https://orcid.org/0000-0003-1276-481X</orcidid><orcidid>https://orcid.org/0000-0001-9166-0626</orcidid><orcidid>https://orcid.org/0000-0002-5792-789X</orcidid><orcidid>https://orcid.org/0000-0001-6838-5849</orcidid><orcidid>https://orcid.org/0000-0002-2046-1694</orcidid><orcidid>https://orcid.org/0000-0002-7191-6521</orcidid><orcidid>https://orcid.org/0000-0001-9066-3171</orcidid><orcidid>https://orcid.org/0000-0002-9239-4566</orcidid><orcidid>https://orcid.org/0000-0001-5501-9444</orcidid><orcidid>https://orcid.org/0000-0002-7354-547X</orcidid><orcidid>https://orcid.org/0000-0001-8045-5926</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid><orcidid>https://orcid.org/0000-0003-4369-4201</orcidid><orcidid>https://orcid.org/0000-0002-7978-7322</orcidid></search><sort><creationdate>201904</creationdate><title>How Hydrologic Connectivity Regulates Water Quality in River Corridors</title><author>Harvey, Jud ; Gomez‐Velez, Jesus ; Schmadel, Noah ; Scott, Durelle ; Boyer, Elizabeth ; Alexander, Richard ; Eng, Ken ; Golden, Heather ; Kettner, Albert ; Konrad, Chris ; Moore, Richard ; Pizzuto, Jim ; Schwarz, Greg ; Soulsby, Chris ; Choi, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4451-724fe2c6d4d93ae4e00a7bd5a28adf4f95e4468adac015efbecf03b70c2faff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biogeochemistry</topic><topic>Channel storage</topic><topic>Clean Water Rule</topic><topic>Contaminants</topic><topic>Corridors</topic><topic>Denitrification</topic><topic>Downstream</topic><topic>Exchanging</topic><topic>Floodplains</topic><topic>Fluid dynamics</topic><topic>hydrologic connectivity</topic><topic>Hydrology</topic><topic>hyporheic flow</topic><topic>Hyporheic zones</topic><topic>Reactive processing</topic><topic>Residence time</topic><topic>River beds</topic><topic>river corridor</topic><topic>River water</topic><topic>Riverbeds</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Streams</topic><topic>Turbulent mixing</topic><topic>Water pollution</topic><topic>Water quality</topic><topic>Water storage</topic><toplevel>online_resources</toplevel><creatorcontrib>Harvey, Jud</creatorcontrib><creatorcontrib>Gomez‐Velez, Jesus</creatorcontrib><creatorcontrib>Schmadel, Noah</creatorcontrib><creatorcontrib>Scott, Durelle</creatorcontrib><creatorcontrib>Boyer, Elizabeth</creatorcontrib><creatorcontrib>Alexander, Richard</creatorcontrib><creatorcontrib>Eng, Ken</creatorcontrib><creatorcontrib>Golden, Heather</creatorcontrib><creatorcontrib>Kettner, Albert</creatorcontrib><creatorcontrib>Konrad, Chris</creatorcontrib><creatorcontrib>Moore, Richard</creatorcontrib><creatorcontrib>Pizzuto, Jim</creatorcontrib><creatorcontrib>Schwarz, Greg</creatorcontrib><creatorcontrib>Soulsby, Chris</creatorcontrib><creatorcontrib>Choi, Jay</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, Jud</au><au>Gomez‐Velez, Jesus</au><au>Schmadel, Noah</au><au>Scott, Durelle</au><au>Boyer, Elizabeth</au><au>Alexander, Richard</au><au>Eng, Ken</au><au>Golden, Heather</au><au>Kettner, Albert</au><au>Konrad, Chris</au><au>Moore, Richard</au><au>Pizzuto, Jim</au><au>Schwarz, Greg</au><au>Soulsby, Chris</au><au>Choi, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Hydrologic Connectivity Regulates Water Quality in River Corridors</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2019-04</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>369</spage><epage>381</epage><pages>369-381</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><abstract>Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.
Research Impact Statement: We quantify river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains of rivers, and demonstrate the impact on downstream water quality.</abstract><cop>Middleburg</cop><pub>Blackwell Publishing Ltd</pub><pmid>34316249</pmid><doi>10.1111/1752-1688.12691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2654-9873</orcidid><orcidid>https://orcid.org/0000-0003-1276-481X</orcidid><orcidid>https://orcid.org/0000-0001-9166-0626</orcidid><orcidid>https://orcid.org/0000-0002-5792-789X</orcidid><orcidid>https://orcid.org/0000-0001-6838-5849</orcidid><orcidid>https://orcid.org/0000-0002-2046-1694</orcidid><orcidid>https://orcid.org/0000-0002-7191-6521</orcidid><orcidid>https://orcid.org/0000-0001-9066-3171</orcidid><orcidid>https://orcid.org/0000-0002-9239-4566</orcidid><orcidid>https://orcid.org/0000-0001-5501-9444</orcidid><orcidid>https://orcid.org/0000-0002-7354-547X</orcidid><orcidid>https://orcid.org/0000-0001-8045-5926</orcidid><orcidid>https://orcid.org/0000-0001-6910-2118</orcidid><orcidid>https://orcid.org/0000-0003-4369-4201</orcidid><orcidid>https://orcid.org/0000-0002-7978-7322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-474X |
ispartof | Journal of the American Water Resources Association, 2019-04, Vol.55 (2), p.369-381 |
issn | 1093-474X 1752-1688 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8312628 |
source | Wiley Online Library All Journals |
subjects | Biogeochemistry Channel storage Clean Water Rule Contaminants Corridors Denitrification Downstream Exchanging Floodplains Fluid dynamics hydrologic connectivity Hydrology hyporheic flow Hyporheic zones Reactive processing Residence time River beds river corridor River water Riverbeds Rivers Sediment Sediments Streams Turbulent mixing Water pollution Water quality Water storage |
title | How Hydrologic Connectivity Regulates Water Quality in River Corridors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Hydrologic%20Connectivity%20Regulates%20Water%20Quality%20in%20River%20Corridors&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Harvey,%20Jud&rft.date=2019-04&rft.volume=55&rft.issue=2&rft.spage=369&rft.epage=381&rft.pages=369-381&rft.issn=1093-474X&rft.eissn=1752-1688&rft_id=info:doi/10.1111/1752-1688.12691&rft_dat=%3Cproquest_pubme%3E2555965748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203151203&rft_id=info:pmid/34316249&rfr_iscdi=true |