Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells
The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting a...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-07, Vol.13 (14), p.2364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 2364 |
container_title | Polymers |
container_volume | 13 |
creator | Ryu, Sung Kwan Kim, Ae Rhan Vinothkannan, Mohanraj Lee, Kyu Ha Chu, Ji Young Yoo, Dong Jin |
description | The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm−1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm−2 of the maximum power density at 70 °C under 100% RH in PEMFCs. |
doi_str_mv | 10.3390/polym13142364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554784955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-710856efa027ca3b33ddf931a4a58ba9b0ce4f2665c355351f2b6b83fce212153</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEolXpkr0lNtNFwI84DxZIo1FaKhU10sA6cpzriavEDrZTdX41fwGnrYDijS3f43O-a90keU_wR8Yq_Gm243EijGSU5dmr5JTigqUZy_Hrf84nybn3dziujOc5Kd4mJyxjmBBKT5NftRmEkdocUDMcvZZWDjBpKUbUODuDCxo8EqZH-6gZAe1gjCVwyropPgRkFdovo7JGBOhRE4k2wh1HMIAgDOAu0GbfbOsL9A2mzol43R3RtZHWzdaJoK1ZLZrB-nmwYTEHH7REW6n7x9grJ-ZhNbt90D18RtsYEcAEHQnrEWRwMTEAijwrcYh29YOMPR3gb-LlAuMjuX-XvFFi9HD-vJ8lPy7r77uv6c3t1fVue5NKVtGQFgSXPAclMC2kYB1jfa8qRkQmeNmJqsMSMkXznEvGOeNE0S7vSqYkUEIJZ2fJlyffeekm6GUkdmJsZ6en-DutFbp9WTF6aA_2vi0Zrjhh0WDzbODszwV8aCftZWwh9mMX31LOOcFVka_SD_9J7-ziTGxvVWVFmVV8JUqfVNJZ7x2oPzAEt-s0tS-mif0GtQfBRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554784955</pqid></control><display><type>article</type><title>Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ryu, Sung Kwan ; Kim, Ae Rhan ; Vinothkannan, Mohanraj ; Lee, Kyu Ha ; Chu, Ji Young ; Yoo, Dong Jin</creator><creatorcontrib>Ryu, Sung Kwan ; Kim, Ae Rhan ; Vinothkannan, Mohanraj ; Lee, Kyu Ha ; Chu, Ji Young ; Yoo, Dong Jin</creatorcontrib><description>The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm−1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm−2 of the maximum power density at 70 °C under 100% RH in PEMFCs.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13142364</identifier><identifier>PMID: 34301122</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Commercialization ; Electrolytes ; Electrolytic cells ; Fuel cells ; Graphene ; Humidity ; Hydrocarbons ; Maximum power density ; Membranes ; NMR ; Nuclear magnetic resonance ; Polymers ; Proton exchange membrane fuel cells ; Protons ; Relative humidity ; Renewable resources ; Stability analysis ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Polymers, 2021-07, Vol.13 (14), p.2364</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-710856efa027ca3b33ddf931a4a58ba9b0ce4f2665c355351f2b6b83fce212153</citedby><cites>FETCH-LOGICAL-c392t-710856efa027ca3b33ddf931a4a58ba9b0ce4f2665c355351f2b6b83fce212153</cites><orcidid>0000-0002-3286-9435 ; 0000-0002-5707-3361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Ryu, Sung Kwan</creatorcontrib><creatorcontrib>Kim, Ae Rhan</creatorcontrib><creatorcontrib>Vinothkannan, Mohanraj</creatorcontrib><creatorcontrib>Lee, Kyu Ha</creatorcontrib><creatorcontrib>Chu, Ji Young</creatorcontrib><creatorcontrib>Yoo, Dong Jin</creatorcontrib><title>Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells</title><title>Polymers</title><description>The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm−1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm−2 of the maximum power density at 70 °C under 100% RH in PEMFCs.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Commercialization</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Graphene</subject><subject>Humidity</subject><subject>Hydrocarbons</subject><subject>Maximum power density</subject><subject>Membranes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Relative humidity</subject><subject>Renewable resources</subject><subject>Stability analysis</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkktv1DAUhSMEolXpkr0lNtNFwI84DxZIo1FaKhU10sA6cpzriavEDrZTdX41fwGnrYDijS3f43O-a90keU_wR8Yq_Gm243EijGSU5dmr5JTigqUZy_Hrf84nybn3dziujOc5Kd4mJyxjmBBKT5NftRmEkdocUDMcvZZWDjBpKUbUODuDCxo8EqZH-6gZAe1gjCVwyropPgRkFdovo7JGBOhRE4k2wh1HMIAgDOAu0GbfbOsL9A2mzol43R3RtZHWzdaJoK1ZLZrB-nmwYTEHH7REW6n7x9grJ-ZhNbt90D18RtsYEcAEHQnrEWRwMTEAijwrcYh29YOMPR3gb-LlAuMjuX-XvFFi9HD-vJ8lPy7r77uv6c3t1fVue5NKVtGQFgSXPAclMC2kYB1jfa8qRkQmeNmJqsMSMkXznEvGOeNE0S7vSqYkUEIJZ2fJlyffeekm6GUkdmJsZ6en-DutFbp9WTF6aA_2vi0Zrjhh0WDzbODszwV8aCftZWwh9mMX31LOOcFVka_SD_9J7-ziTGxvVWVFmVV8JUqfVNJZ7x2oPzAEt-s0tS-mif0GtQfBRA</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Ryu, Sung Kwan</creator><creator>Kim, Ae Rhan</creator><creator>Vinothkannan, Mohanraj</creator><creator>Lee, Kyu Ha</creator><creator>Chu, Ji Young</creator><creator>Yoo, Dong Jin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3286-9435</orcidid><orcidid>https://orcid.org/0000-0002-5707-3361</orcidid></search><sort><creationdate>20210719</creationdate><title>Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells</title><author>Ryu, Sung Kwan ; Kim, Ae Rhan ; Vinothkannan, Mohanraj ; Lee, Kyu Ha ; Chu, Ji Young ; Yoo, Dong Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-710856efa027ca3b33ddf931a4a58ba9b0ce4f2665c355351f2b6b83fce212153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Commercialization</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Graphene</topic><topic>Humidity</topic><topic>Hydrocarbons</topic><topic>Maximum power density</topic><topic>Membranes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Relative humidity</topic><topic>Renewable resources</topic><topic>Stability analysis</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Sung Kwan</creatorcontrib><creatorcontrib>Kim, Ae Rhan</creatorcontrib><creatorcontrib>Vinothkannan, Mohanraj</creatorcontrib><creatorcontrib>Lee, Kyu Ha</creatorcontrib><creatorcontrib>Chu, Ji Young</creatorcontrib><creatorcontrib>Yoo, Dong Jin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Sung Kwan</au><au>Kim, Ae Rhan</au><au>Vinothkannan, Mohanraj</au><au>Lee, Kyu Ha</au><au>Chu, Ji Young</au><au>Yoo, Dong Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells</atitle><jtitle>Polymers</jtitle><date>2021-07-19</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><spage>2364</spage><pages>2364-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm−1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm−2 of the maximum power density at 70 °C under 100% RH in PEMFCs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34301122</pmid><doi>10.3390/polym13142364</doi><orcidid>https://orcid.org/0000-0002-3286-9435</orcidid><orcidid>https://orcid.org/0000-0002-5707-3361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2021-07, Vol.13 (14), p.2364 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309513 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Atomic force microscopes Atomic force microscopy Commercialization Electrolytes Electrolytic cells Fuel cells Graphene Humidity Hydrocarbons Maximum power density Membranes NMR Nuclear magnetic resonance Polymers Proton exchange membrane fuel cells Protons Relative humidity Renewable resources Stability analysis Thermal stability Thermogravimetric analysis |
title | Enhancing Physicochemical Properties and Single Cell Performance of Sulfonated Poly(arylene ether) (SPAE) Membrane by Incorporation of Phosphotungstic Acid and Graphene Oxide: A Potential Electrolyte for Proton Exchange Membrane Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Physicochemical%20Properties%20and%20Single%20Cell%20Performance%20of%20Sulfonated%20Poly(arylene%20ether)%20(SPAE)%20Membrane%20by%20Incorporation%20of%20Phosphotungstic%20Acid%20and%20Graphene%20Oxide:%20A%20Potential%20Electrolyte%20for%20Proton%20Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Polymers&rft.au=Ryu,%20Sung%20Kwan&rft.date=2021-07-19&rft.volume=13&rft.issue=14&rft.spage=2364&rft.pages=2364-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13142364&rft_dat=%3Cproquest_pubme%3E2554784955%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554784955&rft_id=info:pmid/34301122&rfr_iscdi=true |