Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective

Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic–inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-07, Vol.13 (14), p.2244
Hauptverfasser: Park, Hyunhang, Lee, Sung Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 2244
container_title Polymers
container_volume 13
creator Park, Hyunhang
Lee, Sung Hoon
description Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic–inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion strength, and failure behavior between polymer film and silicate glass. The simulation works are described under two categories, namely non-bonded and bonded interaction. In the works for non-bonded interaction, three main interactions, namely van der Waals interaction, polar interaction, and hydrogen bonds, are investigated, and the contributions to interfacial adhesion energy are analyzed. It is revealed that the most dominant interaction for adhesion is hydrogen bonding, but flexibility of the polymer film and modes of adhesion measurement test do affect adhesion and failure behavior. In the case of bonded interactions, the mechanism of covalent silane bond formation through condensation and hydrolysis process is reviewed, and surface reactivity, molecular density, and adhesion properties are calculated with an example of silane functionalized polymer. Besides interfacial interactions, effects of external conditions, such as surface morphology of the glass substrate and relative humidity on the adhesion and failure behavior, are presented, and modeling techniques developed for building interfacial system and calculating adhesion strengths are briefly introduced.
doi_str_mv 10.3390/polym13142244
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555108535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c16c0e53fdbf6da8571eb57543e9abc9036ecd4817551e6f205c03d5f92759f53</originalsourceid><addsrcrecordid>eNpdkU1PxCAQhonRqFGP3km8eKlCgX5cTHTjqonGjdEzYemgmBYqtGv891LXGJULZN5n3plhEDqk5ISxmpz2vv3oKKM8zznfQLs5KVnGWUE2f7130EGMryQdLoqClttoh3FGaArsov4BVhbesXf4xg0QjNJWtfjCu8a6Z3wH-kU5GzvsDZ6PTg_Wu6QvpsIQ8MyrYeJS-lWrYsTW4fPBdzYOVuM730A7yQsIsYeUvIJ9tGVUG-Hg-95DT_PLx9l1dnt_dTM7v800F9WQaVpoAoKZZmmKRlWipLAUpeAMarXUNWEF6IZXtBSCQmFyIjRhjTB1XoraCLaHzta-_bjsoNHghqBa2QfbqfAhvbLyr-Lsi3z2K1kxUrNiMjj-Ngj-bYQ4yDSVhrZVDvwYZS5SZVIJNqFH_9BXP4b0T18UL6sqgYnK1pQOPsYA5qcZSuS0TvlnnewTramTWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554788108</pqid></control><display><type>article</type><title>Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Park, Hyunhang ; Lee, Sung Hoon</creator><creatorcontrib>Park, Hyunhang ; Lee, Sung Hoon</creatorcontrib><description>Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic–inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion strength, and failure behavior between polymer film and silicate glass. The simulation works are described under two categories, namely non-bonded and bonded interaction. In the works for non-bonded interaction, three main interactions, namely van der Waals interaction, polar interaction, and hydrogen bonds, are investigated, and the contributions to interfacial adhesion energy are analyzed. It is revealed that the most dominant interaction for adhesion is hydrogen bonding, but flexibility of the polymer film and modes of adhesion measurement test do affect adhesion and failure behavior. In the case of bonded interactions, the mechanism of covalent silane bond formation through condensation and hydrolysis process is reviewed, and surface reactivity, molecular density, and adhesion properties are calculated with an example of silane functionalized polymer. Besides interfacial interactions, effects of external conditions, such as surface morphology of the glass substrate and relative humidity on the adhesion and failure behavior, are presented, and modeling techniques developed for building interfacial system and calculating adhesion strengths are briefly introduced.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13142244</identifier><identifier>PMID: 34301000</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesive bonding ; Adhesive strength ; Bonding strength ; Failure ; Glass substrates ; Humidity ; Hydrogen bonding ; Hydrogen bonds ; Interfaces ; Interfacial bonding ; Modelling ; Morphology ; Organic light emitting diodes ; Polymer coatings ; Polymer films ; Polymers ; Relative humidity ; Review ; Silanes ; Silica ; Simulation ; Velocity</subject><ispartof>Polymers, 2021-07, Vol.13 (14), p.2244</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c16c0e53fdbf6da8571eb57543e9abc9036ecd4817551e6f205c03d5f92759f53</citedby><cites>FETCH-LOGICAL-c458t-c16c0e53fdbf6da8571eb57543e9abc9036ecd4817551e6f205c03d5f92759f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309365/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309365/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Lee, Sung Hoon</creatorcontrib><title>Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective</title><title>Polymers</title><description>Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic–inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion strength, and failure behavior between polymer film and silicate glass. The simulation works are described under two categories, namely non-bonded and bonded interaction. In the works for non-bonded interaction, three main interactions, namely van der Waals interaction, polar interaction, and hydrogen bonds, are investigated, and the contributions to interfacial adhesion energy are analyzed. It is revealed that the most dominant interaction for adhesion is hydrogen bonding, but flexibility of the polymer film and modes of adhesion measurement test do affect adhesion and failure behavior. In the case of bonded interactions, the mechanism of covalent silane bond formation through condensation and hydrolysis process is reviewed, and surface reactivity, molecular density, and adhesion properties are calculated with an example of silane functionalized polymer. Besides interfacial interactions, effects of external conditions, such as surface morphology of the glass substrate and relative humidity on the adhesion and failure behavior, are presented, and modeling techniques developed for building interfacial system and calculating adhesion strengths are briefly introduced.</description><subject>Adhesive bonding</subject><subject>Adhesive strength</subject><subject>Bonding strength</subject><subject>Failure</subject><subject>Glass substrates</subject><subject>Humidity</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Interfaces</subject><subject>Interfacial bonding</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Organic light emitting diodes</subject><subject>Polymer coatings</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Relative humidity</subject><subject>Review</subject><subject>Silanes</subject><subject>Silica</subject><subject>Simulation</subject><subject>Velocity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1PxCAQhonRqFGP3km8eKlCgX5cTHTjqonGjdEzYemgmBYqtGv891LXGJULZN5n3plhEDqk5ISxmpz2vv3oKKM8zznfQLs5KVnGWUE2f7130EGMryQdLoqClttoh3FGaArsov4BVhbesXf4xg0QjNJWtfjCu8a6Z3wH-kU5GzvsDZ6PTg_Wu6QvpsIQ8MyrYeJS-lWrYsTW4fPBdzYOVuM730A7yQsIsYeUvIJ9tGVUG-Hg-95DT_PLx9l1dnt_dTM7v800F9WQaVpoAoKZZmmKRlWipLAUpeAMarXUNWEF6IZXtBSCQmFyIjRhjTB1XoraCLaHzta-_bjsoNHghqBa2QfbqfAhvbLyr-Lsi3z2K1kxUrNiMjj-Ngj-bYQ4yDSVhrZVDvwYZS5SZVIJNqFH_9BXP4b0T18UL6sqgYnK1pQOPsYA5qcZSuS0TvlnnewTramTWA</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Park, Hyunhang</creator><creator>Lee, Sung Hoon</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210708</creationdate><title>Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective</title><author>Park, Hyunhang ; Lee, Sung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c16c0e53fdbf6da8571eb57543e9abc9036ecd4817551e6f205c03d5f92759f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesive bonding</topic><topic>Adhesive strength</topic><topic>Bonding strength</topic><topic>Failure</topic><topic>Glass substrates</topic><topic>Humidity</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Interfaces</topic><topic>Interfacial bonding</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Organic light emitting diodes</topic><topic>Polymer coatings</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Relative humidity</topic><topic>Review</topic><topic>Silanes</topic><topic>Silica</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Lee, Sung Hoon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyunhang</au><au>Lee, Sung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective</atitle><jtitle>Polymers</jtitle><date>2021-07-08</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><spage>2244</spage><pages>2244-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Atomistic modeling methods are successfully applied to understand interfacial interaction in nanoscale size and analyze adhesion mechanism in the organic–inorganic interface. In this paper, we review recent representative atomistic simulation works, focusing on the interfacial bonding, adhesion strength, and failure behavior between polymer film and silicate glass. The simulation works are described under two categories, namely non-bonded and bonded interaction. In the works for non-bonded interaction, three main interactions, namely van der Waals interaction, polar interaction, and hydrogen bonds, are investigated, and the contributions to interfacial adhesion energy are analyzed. It is revealed that the most dominant interaction for adhesion is hydrogen bonding, but flexibility of the polymer film and modes of adhesion measurement test do affect adhesion and failure behavior. In the case of bonded interactions, the mechanism of covalent silane bond formation through condensation and hydrolysis process is reviewed, and surface reactivity, molecular density, and adhesion properties are calculated with an example of silane functionalized polymer. Besides interfacial interactions, effects of external conditions, such as surface morphology of the glass substrate and relative humidity on the adhesion and failure behavior, are presented, and modeling techniques developed for building interfacial system and calculating adhesion strengths are briefly introduced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34301000</pmid><doi>10.3390/polym13142244</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-07, Vol.13 (14), p.2244
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309365
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Adhesive bonding
Adhesive strength
Bonding strength
Failure
Glass substrates
Humidity
Hydrogen bonding
Hydrogen bonds
Interfaces
Interfacial bonding
Modelling
Morphology
Organic light emitting diodes
Polymer coatings
Polymer films
Polymers
Relative humidity
Review
Silanes
Silica
Simulation
Velocity
title Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20on%20Interfacial%20Bonding%20Mechanism%20of%20Functional%20Polymer%20Coating%20on%20Glass%20in%20Atomistic%20Modeling%20Perspective&rft.jtitle=Polymers&rft.au=Park,%20Hyunhang&rft.date=2021-07-08&rft.volume=13&rft.issue=14&rft.spage=2244&rft.pages=2244-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13142244&rft_dat=%3Cproquest_pubme%3E2555108535%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554788108&rft_id=info:pmid/34301000&rfr_iscdi=true