Structural basis for potassium transport in prokaryotes by KdpFABC

KdpFABC is an oligomeric K⁺ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K⁺ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-9
Hauptverfasser: Sweet, Marie E., Larsen, Casper, Zhang, Xihui, Schlame, Michael, Pedersen, Bjørn P., Stokes, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 29
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Sweet, Marie E.
Larsen, Casper
Zhang, Xihui
Schlame, Michael
Pedersen, Bjørn P.
Stokes, David L.
description KdpFABC is an oligomeric K⁺ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K⁺ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K⁺ or water and which define a pathway for K⁺ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K⁺ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K⁺ to the cytoplasm.
doi_str_mv 10.1073/pnas.2105195118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052530</jstor_id><sourcerecordid>27052530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3ed1b1566d7245da27716043250f319865196afbc55d8b6e6439da0e9d82660b3</originalsourceid><addsrcrecordid>eNpdkc1P3DAUxC1UBAv0zIkqEhcugff8nUslWEFbFamH0rPlJA7Nko1T20Hiv8erpduP0zvM741mNIScIlwiKHY1jTZeUgSBlUDUe2SBUGEpeQXvyAKAqlJzyg_JUYwrAKiEhgNyyDhVlGq9IDffU5ibNAc7FLWNfSw6H4rJJxtjP6-LFOwYJx9S0Y_FFPyTDS8-uVjUL8XXdrq7vlmekP3ODtG9f7vH5Mfd7cPyc3n_7dOX5fV92XDOUslcizUKKVtFuWgtVQolcEYFdAwrLXMHabu6EaLVtXSSs6q14KpWUymhZsfk49Z3muu1axs35nCDmUK_zqGMt735Vxn7n-bRPxvNQFWI2eDizSD4X7OLyaz72LhhsKPzczRUCJpzoOAZPf8PXfk5jLnehhKomBYqU1dbqgk-xuC6XRgEs9nHbPYxf_bJHx_-7rDjfw-SgbMtsIrJh51OFQgqGLBXvrKU_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555173857</pqid></control><display><type>article</type><title>Structural basis for potassium transport in prokaryotes by KdpFABC</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sweet, Marie E. ; Larsen, Casper ; Zhang, Xihui ; Schlame, Michael ; Pedersen, Bjørn P. ; Stokes, David L.</creator><creatorcontrib>Sweet, Marie E. ; Larsen, Casper ; Zhang, Xihui ; Schlame, Michael ; Pedersen, Bjørn P. ; Stokes, David L.</creatorcontrib><description>KdpFABC is an oligomeric K⁺ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K⁺ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K⁺ or water and which define a pathway for K⁺ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K⁺ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K⁺ to the cytoplasm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105195118</identifier><identifier>PMID: 34272288</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Binding Sites ; Biological Sciences ; Cation Transport Proteins - chemistry ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cytoplasm ; Electron microscopy ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Homeostasis ; Intermediates ; Ion Transport ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Operon ; Potassium - metabolism ; Prokaryotes ; Substrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9</ispartof><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3ed1b1566d7245da27716043250f319865196afbc55d8b6e6439da0e9d82660b3</citedby><cites>FETCH-LOGICAL-c443t-3ed1b1566d7245da27716043250f319865196afbc55d8b6e6439da0e9d82660b3</cites><orcidid>0000-0001-7860-7230 ; 0000-0001-5455-8163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052530$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052530$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34272288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sweet, Marie E.</creatorcontrib><creatorcontrib>Larsen, Casper</creatorcontrib><creatorcontrib>Zhang, Xihui</creatorcontrib><creatorcontrib>Schlame, Michael</creatorcontrib><creatorcontrib>Pedersen, Bjørn P.</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><title>Structural basis for potassium transport in prokaryotes by KdpFABC</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>KdpFABC is an oligomeric K⁺ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K⁺ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K⁺ or water and which define a pathway for K⁺ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K⁺ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K⁺ to the cytoplasm.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cation Transport Proteins - chemistry</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cytoplasm</subject><subject>Electron microscopy</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Intermediates</subject><subject>Ion Transport</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Operon</subject><subject>Potassium - metabolism</subject><subject>Prokaryotes</subject><subject>Substrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAUxC1UBAv0zIkqEhcugff8nUslWEFbFamH0rPlJA7Nko1T20Hiv8erpduP0zvM741mNIScIlwiKHY1jTZeUgSBlUDUe2SBUGEpeQXvyAKAqlJzyg_JUYwrAKiEhgNyyDhVlGq9IDffU5ibNAc7FLWNfSw6H4rJJxtjP6-LFOwYJx9S0Y_FFPyTDS8-uVjUL8XXdrq7vlmekP3ODtG9f7vH5Mfd7cPyc3n_7dOX5fV92XDOUslcizUKKVtFuWgtVQolcEYFdAwrLXMHabu6EaLVtXSSs6q14KpWUymhZsfk49Z3muu1axs35nCDmUK_zqGMt735Vxn7n-bRPxvNQFWI2eDizSD4X7OLyaz72LhhsKPzczRUCJpzoOAZPf8PXfk5jLnehhKomBYqU1dbqgk-xuC6XRgEs9nHbPYxf_bJHx_-7rDjfw-SgbMtsIrJh51OFQgqGLBXvrKU_w</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Sweet, Marie E.</creator><creator>Larsen, Casper</creator><creator>Zhang, Xihui</creator><creator>Schlame, Michael</creator><creator>Pedersen, Bjørn P.</creator><creator>Stokes, David L.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7860-7230</orcidid><orcidid>https://orcid.org/0000-0001-5455-8163</orcidid></search><sort><creationdate>20210720</creationdate><title>Structural basis for potassium transport in prokaryotes by KdpFABC</title><author>Sweet, Marie E. ; Larsen, Casper ; Zhang, Xihui ; Schlame, Michael ; Pedersen, Bjørn P. ; Stokes, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3ed1b1566d7245da27716043250f319865196afbc55d8b6e6439da0e9d82660b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cation Transport Proteins - chemistry</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cytoplasm</topic><topic>Electron microscopy</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Intermediates</topic><topic>Ion Transport</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Operon</topic><topic>Potassium - metabolism</topic><topic>Prokaryotes</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweet, Marie E.</creatorcontrib><creatorcontrib>Larsen, Casper</creatorcontrib><creatorcontrib>Zhang, Xihui</creatorcontrib><creatorcontrib>Schlame, Michael</creatorcontrib><creatorcontrib>Pedersen, Bjørn P.</creatorcontrib><creatorcontrib>Stokes, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweet, Marie E.</au><au>Larsen, Casper</au><au>Zhang, Xihui</au><au>Schlame, Michael</au><au>Pedersen, Bjørn P.</au><au>Stokes, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for potassium transport in prokaryotes by KdpFABC</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>KdpFABC is an oligomeric K⁺ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K⁺ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K⁺ or water and which define a pathway for K⁺ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K⁺ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K⁺ to the cytoplasm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34272288</pmid><doi>10.1073/pnas.2105195118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7860-7230</orcidid><orcidid>https://orcid.org/0000-0001-5455-8163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-9
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307911
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Binding Sites
Biological Sciences
Cation Transport Proteins - chemistry
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cytoplasm
Electron microscopy
Escherichia coli - chemistry
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Homeostasis
Intermediates
Ion Transport
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
Operon
Potassium - metabolism
Prokaryotes
Substrates
title Structural basis for potassium transport in prokaryotes by KdpFABC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20potassium%20transport%20in%20prokaryotes%20by%20KdpFABC&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sweet,%20Marie%20E.&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105195118&rft_dat=%3Cjstor_pubme%3E27052530%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555173857&rft_id=info:pmid/34272288&rft_jstor_id=27052530&rfr_iscdi=true