Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest
Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 29 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Obrist, Daniel Roy, Eric M. Harrison, Jamie L. Kwong, Charlotte F. Munger, J. William Moosmüller, Hans Romero, Christ D. Sun, Shiwei Zhou, Jun Commane, Róisín |
description | Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export. |
doi_str_mv | 10.1073/pnas.2105477118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052515</jstor_id><sourcerecordid>27052515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</originalsourceid><addsrcrecordid>eNpVkUtvFDEQhC0EIpvAmRNoBOdJ2m_PBSmKICBFggOIo-XxeFivduzBj0j773G0YYFTH-rr6i4VQq8wXGKQ9GoNJl8SDJxJibF6gjYYBtwLNsBTtAEgsleMsDN0nvMOAAau4Dk6o4xIQtSwQT--JnfvY837Q1eDsTbWUNzUmbLEvG5d8rZbXLI1HbrJrTH74mPofOhMt_hpb4ovdXJNs36qzaebY3K5vEDPZrPP7uXjvEDfP374dvOpv_ty-_nm-q63TELpR2kHwhwmZrSOUzkPo5y4xdyNgjEi5CwIEGEZGbGQwzwJRamwDo8wY1ADvUDvj75rHRc3WRdKMnu9Jr-YdNDReP2_EvxW_4z3WlGQirFm8PZoEHPxOltfnN3aGIKzRWMFigpo0LvHKyn-qi2e3sWaQgumCeccS8akatTVkbIp5pzcfHoDg36oSz_Upf_W1Tbe_Pv9if_TTwNeH4FdLjGddCKBE445_Q1HQ5ye</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555174478</pqid></control><display><type>article</type><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín</creator><creatorcontrib>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105477118</identifier><identifier>PMID: 34272289</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Air Pollutants - analysis ; Air Pollutants - metabolism ; Altitude ; Aquatic animals ; Aquatic biota ; Atmosphere ; Atmospheric composition ; Biological Sciences ; Biota ; Carbon dioxide ; Deciduous forests ; Deposition ; dry deposition ; Ecosystem ; Environmental Monitoring ; ENVIRONMENTAL SCIENCES ; Forest floor ; Forests ; Hardwoods ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Litter fall ; mass balance ; Mercury ; Mercury (metal) ; Mercury - analysis ; Mercury - metabolism ; mercury cycling ; Photosynthesis ; Physical Sciences ; Rural atmospheres ; Soil - chemistry ; Soils ; Trees - chemistry ; Trees - metabolism ; Water quality ; Wet deposition ; Wildlife</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</citedby><cites>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</cites><orcidid>0000-0002-1042-8452 ; 0000-0003-1373-1550 ; 0000-0002-1021-8877 ; 0000-0002-3077-8011 ; 0000000210428452 ; 0000000210218877 ; 0000000313731550 ; 0000000230778011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34272289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1808360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Obrist, Daniel</creatorcontrib><creatorcontrib>Roy, Eric M.</creatorcontrib><creatorcontrib>Harrison, Jamie L.</creatorcontrib><creatorcontrib>Kwong, Charlotte F.</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Moosmüller, Hans</creatorcontrib><creatorcontrib>Romero, Christ D.</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Commane, Róisín</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</description><subject>Air Pollutants - analysis</subject><subject>Air Pollutants - metabolism</subject><subject>Altitude</subject><subject>Aquatic animals</subject><subject>Aquatic biota</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Biological Sciences</subject><subject>Biota</subject><subject>Carbon dioxide</subject><subject>Deciduous forests</subject><subject>Deposition</subject><subject>dry deposition</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest floor</subject><subject>Forests</subject><subject>Hardwoods</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Litter fall</subject><subject>mass balance</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Mercury - analysis</subject><subject>Mercury - metabolism</subject><subject>mercury cycling</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Rural atmospheres</subject><subject>Soil - chemistry</subject><subject>Soils</subject><subject>Trees - chemistry</subject><subject>Trees - metabolism</subject><subject>Water quality</subject><subject>Wet deposition</subject><subject>Wildlife</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtvFDEQhC0EIpvAmRNoBOdJ2m_PBSmKICBFggOIo-XxeFivduzBj0j773G0YYFTH-rr6i4VQq8wXGKQ9GoNJl8SDJxJibF6gjYYBtwLNsBTtAEgsleMsDN0nvMOAAau4Dk6o4xIQtSwQT--JnfvY837Q1eDsTbWUNzUmbLEvG5d8rZbXLI1HbrJrTH74mPofOhMt_hpb4ovdXJNs36qzaebY3K5vEDPZrPP7uXjvEDfP374dvOpv_ty-_nm-q63TELpR2kHwhwmZrSOUzkPo5y4xdyNgjEi5CwIEGEZGbGQwzwJRamwDo8wY1ADvUDvj75rHRc3WRdKMnu9Jr-YdNDReP2_EvxW_4z3WlGQirFm8PZoEHPxOltfnN3aGIKzRWMFigpo0LvHKyn-qi2e3sWaQgumCeccS8akatTVkbIp5pzcfHoDg36oSz_Upf_W1Tbe_Pv9if_TTwNeH4FdLjGddCKBE445_Q1HQ5ye</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Obrist, Daniel</creator><creator>Roy, Eric M.</creator><creator>Harrison, Jamie L.</creator><creator>Kwong, Charlotte F.</creator><creator>Munger, J. William</creator><creator>Moosmüller, Hans</creator><creator>Romero, Christ D.</creator><creator>Sun, Shiwei</creator><creator>Zhou, Jun</creator><creator>Commane, Róisín</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1042-8452</orcidid><orcidid>https://orcid.org/0000-0003-1373-1550</orcidid><orcidid>https://orcid.org/0000-0002-1021-8877</orcidid><orcidid>https://orcid.org/0000-0002-3077-8011</orcidid><orcidid>https://orcid.org/0000000210428452</orcidid><orcidid>https://orcid.org/0000000210218877</orcidid><orcidid>https://orcid.org/0000000313731550</orcidid><orcidid>https://orcid.org/0000000230778011</orcidid></search><sort><creationdate>20210720</creationdate><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><author>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air Pollutants - analysis</topic><topic>Air Pollutants - metabolism</topic><topic>Altitude</topic><topic>Aquatic animals</topic><topic>Aquatic biota</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Biological Sciences</topic><topic>Biota</topic><topic>Carbon dioxide</topic><topic>Deciduous forests</topic><topic>Deposition</topic><topic>dry deposition</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest floor</topic><topic>Forests</topic><topic>Hardwoods</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Litter fall</topic><topic>mass balance</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Mercury - analysis</topic><topic>Mercury - metabolism</topic><topic>mercury cycling</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Rural atmospheres</topic><topic>Soil - chemistry</topic><topic>Soils</topic><topic>Trees - chemistry</topic><topic>Trees - metabolism</topic><topic>Water quality</topic><topic>Wet deposition</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obrist, Daniel</creatorcontrib><creatorcontrib>Roy, Eric M.</creatorcontrib><creatorcontrib>Harrison, Jamie L.</creatorcontrib><creatorcontrib>Kwong, Charlotte F.</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Moosmüller, Hans</creatorcontrib><creatorcontrib>Romero, Christ D.</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Commane, Róisín</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obrist, Daniel</au><au>Roy, Eric M.</au><au>Harrison, Jamie L.</au><au>Kwong, Charlotte F.</au><au>Munger, J. William</au><au>Moosmüller, Hans</au><au>Romero, Christ D.</au><au>Sun, Shiwei</au><au>Zhou, Jun</au><au>Commane, Róisín</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34272289</pmid><doi>10.1073/pnas.2105477118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1042-8452</orcidid><orcidid>https://orcid.org/0000-0003-1373-1550</orcidid><orcidid>https://orcid.org/0000-0002-1021-8877</orcidid><orcidid>https://orcid.org/0000-0002-3077-8011</orcidid><orcidid>https://orcid.org/0000000210428452</orcidid><orcidid>https://orcid.org/0000000210218877</orcidid><orcidid>https://orcid.org/0000000313731550</orcidid><orcidid>https://orcid.org/0000000230778011</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-7 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307844 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Air Pollutants - analysis Air Pollutants - metabolism Altitude Aquatic animals Aquatic biota Atmosphere Atmospheric composition Biological Sciences Biota Carbon dioxide Deciduous forests Deposition dry deposition Ecosystem Environmental Monitoring ENVIRONMENTAL SCIENCES Forest floor Forests Hardwoods INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Litter fall mass balance Mercury Mercury (metal) Mercury - analysis Mercury - metabolism mercury cycling Photosynthesis Physical Sciences Rural atmospheres Soil - chemistry Soils Trees - chemistry Trees - metabolism Water quality Wet deposition Wildlife |
title | Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Previously%20unaccounted%20atmospheric%20mercury%20deposition%20in%20a%20midlatitude%20deciduous%20forest&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Obrist,%20Daniel&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105477118&rft_dat=%3Cjstor_pubme%3E27052515%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555174478&rft_id=info:pmid/34272289&rft_jstor_id=27052515&rfr_iscdi=true |