Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest

Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-7
Hauptverfasser: Obrist, Daniel, Roy, Eric M., Harrison, Jamie L., Kwong, Charlotte F., Munger, J. William, Moosmüller, Hans, Romero, Christ D., Sun, Shiwei, Zhou, Jun, Commane, Róisín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 29
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Obrist, Daniel
Roy, Eric M.
Harrison, Jamie L.
Kwong, Charlotte F.
Munger, J. William
Moosmüller, Hans
Romero, Christ D.
Sun, Shiwei
Zhou, Jun
Commane, Róisín
description Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.
doi_str_mv 10.1073/pnas.2105477118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052515</jstor_id><sourcerecordid>27052515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</originalsourceid><addsrcrecordid>eNpVkUtvFDEQhC0EIpvAmRNoBOdJ2m_PBSmKICBFggOIo-XxeFivduzBj0j773G0YYFTH-rr6i4VQq8wXGKQ9GoNJl8SDJxJibF6gjYYBtwLNsBTtAEgsleMsDN0nvMOAAau4Dk6o4xIQtSwQT--JnfvY837Q1eDsTbWUNzUmbLEvG5d8rZbXLI1HbrJrTH74mPofOhMt_hpb4ovdXJNs36qzaebY3K5vEDPZrPP7uXjvEDfP374dvOpv_ty-_nm-q63TELpR2kHwhwmZrSOUzkPo5y4xdyNgjEi5CwIEGEZGbGQwzwJRamwDo8wY1ADvUDvj75rHRc3WRdKMnu9Jr-YdNDReP2_EvxW_4z3WlGQirFm8PZoEHPxOltfnN3aGIKzRWMFigpo0LvHKyn-qi2e3sWaQgumCeccS8akatTVkbIp5pzcfHoDg36oSz_Upf_W1Tbe_Pv9if_TTwNeH4FdLjGddCKBE445_Q1HQ5ye</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555174478</pqid></control><display><type>article</type><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín</creator><creatorcontrib>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105477118</identifier><identifier>PMID: 34272289</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Air Pollutants - analysis ; Air Pollutants - metabolism ; Altitude ; Aquatic animals ; Aquatic biota ; Atmosphere ; Atmospheric composition ; Biological Sciences ; Biota ; Carbon dioxide ; Deciduous forests ; Deposition ; dry deposition ; Ecosystem ; Environmental Monitoring ; ENVIRONMENTAL SCIENCES ; Forest floor ; Forests ; Hardwoods ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Litter fall ; mass balance ; Mercury ; Mercury (metal) ; Mercury - analysis ; Mercury - metabolism ; mercury cycling ; Photosynthesis ; Physical Sciences ; Rural atmospheres ; Soil - chemistry ; Soils ; Trees - chemistry ; Trees - metabolism ; Water quality ; Wet deposition ; Wildlife</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-7</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</citedby><cites>FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</cites><orcidid>0000-0002-1042-8452 ; 0000-0003-1373-1550 ; 0000-0002-1021-8877 ; 0000-0002-3077-8011 ; 0000000210428452 ; 0000000210218877 ; 0000000313731550 ; 0000000230778011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34272289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1808360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Obrist, Daniel</creatorcontrib><creatorcontrib>Roy, Eric M.</creatorcontrib><creatorcontrib>Harrison, Jamie L.</creatorcontrib><creatorcontrib>Kwong, Charlotte F.</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Moosmüller, Hans</creatorcontrib><creatorcontrib>Romero, Christ D.</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Commane, Róisín</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</description><subject>Air Pollutants - analysis</subject><subject>Air Pollutants - metabolism</subject><subject>Altitude</subject><subject>Aquatic animals</subject><subject>Aquatic biota</subject><subject>Atmosphere</subject><subject>Atmospheric composition</subject><subject>Biological Sciences</subject><subject>Biota</subject><subject>Carbon dioxide</subject><subject>Deciduous forests</subject><subject>Deposition</subject><subject>dry deposition</subject><subject>Ecosystem</subject><subject>Environmental Monitoring</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forest floor</subject><subject>Forests</subject><subject>Hardwoods</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Litter fall</subject><subject>mass balance</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Mercury - analysis</subject><subject>Mercury - metabolism</subject><subject>mercury cycling</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>Rural atmospheres</subject><subject>Soil - chemistry</subject><subject>Soils</subject><subject>Trees - chemistry</subject><subject>Trees - metabolism</subject><subject>Water quality</subject><subject>Wet deposition</subject><subject>Wildlife</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtvFDEQhC0EIpvAmRNoBOdJ2m_PBSmKICBFggOIo-XxeFivduzBj0j773G0YYFTH-rr6i4VQq8wXGKQ9GoNJl8SDJxJibF6gjYYBtwLNsBTtAEgsleMsDN0nvMOAAau4Dk6o4xIQtSwQT--JnfvY837Q1eDsTbWUNzUmbLEvG5d8rZbXLI1HbrJrTH74mPofOhMt_hpb4ovdXJNs36qzaebY3K5vEDPZrPP7uXjvEDfP374dvOpv_ty-_nm-q63TELpR2kHwhwmZrSOUzkPo5y4xdyNgjEi5CwIEGEZGbGQwzwJRamwDo8wY1ADvUDvj75rHRc3WRdKMnu9Jr-YdNDReP2_EvxW_4z3WlGQirFm8PZoEHPxOltfnN3aGIKzRWMFigpo0LvHKyn-qi2e3sWaQgumCeccS8akatTVkbIp5pzcfHoDg36oSz_Upf_W1Tbe_Pv9if_TTwNeH4FdLjGddCKBE445_Q1HQ5ye</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Obrist, Daniel</creator><creator>Roy, Eric M.</creator><creator>Harrison, Jamie L.</creator><creator>Kwong, Charlotte F.</creator><creator>Munger, J. William</creator><creator>Moosmüller, Hans</creator><creator>Romero, Christ D.</creator><creator>Sun, Shiwei</creator><creator>Zhou, Jun</creator><creator>Commane, Róisín</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1042-8452</orcidid><orcidid>https://orcid.org/0000-0003-1373-1550</orcidid><orcidid>https://orcid.org/0000-0002-1021-8877</orcidid><orcidid>https://orcid.org/0000-0002-3077-8011</orcidid><orcidid>https://orcid.org/0000000210428452</orcidid><orcidid>https://orcid.org/0000000210218877</orcidid><orcidid>https://orcid.org/0000000313731550</orcidid><orcidid>https://orcid.org/0000000230778011</orcidid></search><sort><creationdate>20210720</creationdate><title>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</title><author>Obrist, Daniel ; Roy, Eric M. ; Harrison, Jamie L. ; Kwong, Charlotte F. ; Munger, J. William ; Moosmüller, Hans ; Romero, Christ D. ; Sun, Shiwei ; Zhou, Jun ; Commane, Róisín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b7c924e12abce537f9b7d5c15eb644267f62026c42b1679fd68336ce1b0f10893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air Pollutants - analysis</topic><topic>Air Pollutants - metabolism</topic><topic>Altitude</topic><topic>Aquatic animals</topic><topic>Aquatic biota</topic><topic>Atmosphere</topic><topic>Atmospheric composition</topic><topic>Biological Sciences</topic><topic>Biota</topic><topic>Carbon dioxide</topic><topic>Deciduous forests</topic><topic>Deposition</topic><topic>dry deposition</topic><topic>Ecosystem</topic><topic>Environmental Monitoring</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forest floor</topic><topic>Forests</topic><topic>Hardwoods</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Litter fall</topic><topic>mass balance</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Mercury - analysis</topic><topic>Mercury - metabolism</topic><topic>mercury cycling</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>Rural atmospheres</topic><topic>Soil - chemistry</topic><topic>Soils</topic><topic>Trees - chemistry</topic><topic>Trees - metabolism</topic><topic>Water quality</topic><topic>Wet deposition</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obrist, Daniel</creatorcontrib><creatorcontrib>Roy, Eric M.</creatorcontrib><creatorcontrib>Harrison, Jamie L.</creatorcontrib><creatorcontrib>Kwong, Charlotte F.</creatorcontrib><creatorcontrib>Munger, J. William</creatorcontrib><creatorcontrib>Moosmüller, Hans</creatorcontrib><creatorcontrib>Romero, Christ D.</creatorcontrib><creatorcontrib>Sun, Shiwei</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Commane, Róisín</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obrist, Daniel</au><au>Roy, Eric M.</au><au>Harrison, Jamie L.</au><au>Kwong, Charlotte F.</au><au>Munger, J. William</au><au>Moosmüller, Hans</au><au>Romero, Christ D.</au><au>Sun, Shiwei</au><au>Zhou, Jun</au><au>Commane, Róisín</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mercury is toxic to wildlife and humans, and forests are thought to be a globally important sink for gaseous elemental mercury (GEM) deposition from the atmosphere. Yet there are currently no annual GEM deposition measurements over rural forests. Here we present measurements of ecosystem–atmosphere GEM exchange using tower-based micrometeorological methods in a midlatitude hardwood forest. We measured an annual GEM deposition of 25.1 μg · m−2 (95% CI: 23.2 to 26.7 1 μg · m−2), which is five times larger than wet deposition of mercury from the atmosphere. Our observed annual GEM deposition accounts for 76% of total atmospheric mercury deposition and also is three times greater than litterfall mercury deposition, which has previously been used as a proxy measure for GEM deposition in forests. Plant GEM uptake is the dominant driver for ecosystem GEM deposition based on seasonal and diel dynamics that show the forest GEM sink to be largest during active vegetation growing periods and middays, analogous to photosynthetic carbon dioxide assimilation. Soils and litter on the forest floor are additional GEM sinks throughout the year. Our study suggests that mercury loading to this forest was underestimated by a factor of about two and that global forests may constitute a much larger global GEM sink than currently proposed. The larger than anticipated forest GEM sink may explain the high mercury loads observed in soils across rural forests, which impair water quality and aquatic biota via watershed Hg export.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34272289</pmid><doi>10.1073/pnas.2105477118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1042-8452</orcidid><orcidid>https://orcid.org/0000-0003-1373-1550</orcidid><orcidid>https://orcid.org/0000-0002-1021-8877</orcidid><orcidid>https://orcid.org/0000-0002-3077-8011</orcidid><orcidid>https://orcid.org/0000000210428452</orcidid><orcidid>https://orcid.org/0000000210218877</orcidid><orcidid>https://orcid.org/0000000313731550</orcidid><orcidid>https://orcid.org/0000000230778011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-7
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307844
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air Pollutants - analysis
Air Pollutants - metabolism
Altitude
Aquatic animals
Aquatic biota
Atmosphere
Atmospheric composition
Biological Sciences
Biota
Carbon dioxide
Deciduous forests
Deposition
dry deposition
Ecosystem
Environmental Monitoring
ENVIRONMENTAL SCIENCES
Forest floor
Forests
Hardwoods
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Litter fall
mass balance
Mercury
Mercury (metal)
Mercury - analysis
Mercury - metabolism
mercury cycling
Photosynthesis
Physical Sciences
Rural atmospheres
Soil - chemistry
Soils
Trees - chemistry
Trees - metabolism
Water quality
Wet deposition
Wildlife
title Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Previously%20unaccounted%20atmospheric%20mercury%20deposition%20in%20a%20midlatitude%20deciduous%20forest&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Obrist,%20Daniel&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105477118&rft_dat=%3Cjstor_pubme%3E27052515%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555174478&rft_id=info:pmid/34272289&rft_jstor_id=27052515&rfr_iscdi=true