Soldering of Electronics Components on 3D-Printed Conductive Substrates

Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-07, Vol.14 (14), p.3850
Hauptverfasser: Podsiadły, Bartłomiej, Skalski, Andrzej, Słoma, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 3850
container_title Materials
container_volume 14
creator Podsiadły, Bartłomiej
Skalski, Andrzej
Słoma, Marcin
description Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical components with these techniques. One way to produce complex structural electronic circuits is to merge 3D-printed elements with standard electronic components. Here, different soldering and surface preparation methods before soldering are tested to find the optimal method for soldering typical electronic components on conductive, 3D-printed, composite substrates. To determine the optimal soldering condition, the contact angles of solder joints fabricated in different conditions were measured. Additionally, the mechanical strength of the joints was measured using the shear force test. The research shows a possibility of fabricating strong, conductive solder joints on composites substrates prepared by additive manufacturing. The results show that mechanical cleaning and using additional flux on the composite substrates are necessary to obtain high-quality solder joints. The most repeatable joints with the highest shear strength values were obtained using reflow soldering together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the successful merging of 3D-printed structural electronics with standard electronic components.
doi_str_mv 10.3390/ma14143850
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555107344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-86b9cf21d89a8d6864884a2ea748f96dae7b921a3714bfc9fbc763af1294fd893</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotmhf_AULvoiwmmyym-RFkFovUFCoPodsNqlbdpOaZAv-e1NavM3LDJxvDjMcAM4QvMKYw-teIoIIZiU8AGPEeZUjTsjhr3kEJiGsYCqMESv4MRhhgiGkFI3Bw8J1jfatXWbOZLNOq-idbVXIpq5fO6ttDJmzGb7LXxIVdZME2wwqthudLYY6RC-jDqfgyMgu6Mm-n4C3-9nr9DGfPz88TW_nucIMx5xVNVemQA3jkjUVqwhjRBZaUsIMrxqpac0LJDFFpDaKm1rRCkuDCk5MWsIn4Gbnux7qXjcq3edlJ9a-7aX_FE624q9i23exdBvBMKQlpMngYm_g3cegQxR9G5TuOmm1G4IoyrJEiSMkoef_0JUbvE3vbSlSwbKgZaIud5TyLgSvzfcxCIptROInIvwF-4uCAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554605275</pqid></control><display><type>article</type><title>Soldering of Electronics Components on 3D-Printed Conductive Substrates</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Podsiadły, Bartłomiej ; Skalski, Andrzej ; Słoma, Marcin</creator><creatorcontrib>Podsiadły, Bartłomiej ; Skalski, Andrzej ; Słoma, Marcin</creatorcontrib><description>Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical components with these techniques. One way to produce complex structural electronic circuits is to merge 3D-printed elements with standard electronic components. Here, different soldering and surface preparation methods before soldering are tested to find the optimal method for soldering typical electronic components on conductive, 3D-printed, composite substrates. To determine the optimal soldering condition, the contact angles of solder joints fabricated in different conditions were measured. Additionally, the mechanical strength of the joints was measured using the shear force test. The research shows a possibility of fabricating strong, conductive solder joints on composites substrates prepared by additive manufacturing. The results show that mechanical cleaning and using additional flux on the composite substrates are necessary to obtain high-quality solder joints. The most repeatable joints with the highest shear strength values were obtained using reflow soldering together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the successful merging of 3D-printed structural electronics with standard electronic components.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14143850</identifier><identifier>PMID: 34300771</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Adhesives ; Alloys ; Circuits ; Composite materials ; Contact angle ; Electric components ; Electric contacts ; Electronic circuits ; Electronic components ; Electronics ; High temperature ; Low temperature ; Mechanical cleaning ; Mechanical properties ; Methods ; Particle size ; Polymers ; Production methods ; Rapid prototyping ; Reflow soldering ; Shear forces ; Shear strength ; Soldered joints ; Solders ; Solvents ; Substrates ; Surface preparation ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Materials, 2021-07, Vol.14 (14), p.3850</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-86b9cf21d89a8d6864884a2ea748f96dae7b921a3714bfc9fbc763af1294fd893</citedby><cites>FETCH-LOGICAL-c383t-86b9cf21d89a8d6864884a2ea748f96dae7b921a3714bfc9fbc763af1294fd893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307507/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307507/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids></links><search><creatorcontrib>Podsiadły, Bartłomiej</creatorcontrib><creatorcontrib>Skalski, Andrzej</creatorcontrib><creatorcontrib>Słoma, Marcin</creatorcontrib><title>Soldering of Electronics Components on 3D-Printed Conductive Substrates</title><title>Materials</title><description>Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical components with these techniques. One way to produce complex structural electronic circuits is to merge 3D-printed elements with standard electronic components. Here, different soldering and surface preparation methods before soldering are tested to find the optimal method for soldering typical electronic components on conductive, 3D-printed, composite substrates. To determine the optimal soldering condition, the contact angles of solder joints fabricated in different conditions were measured. Additionally, the mechanical strength of the joints was measured using the shear force test. The research shows a possibility of fabricating strong, conductive solder joints on composites substrates prepared by additive manufacturing. The results show that mechanical cleaning and using additional flux on the composite substrates are necessary to obtain high-quality solder joints. The most repeatable joints with the highest shear strength values were obtained using reflow soldering together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the successful merging of 3D-printed structural electronics with standard electronic components.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Adhesives</subject><subject>Alloys</subject><subject>Circuits</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Electric components</subject><subject>Electric contacts</subject><subject>Electronic circuits</subject><subject>Electronic components</subject><subject>Electronics</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Mechanical cleaning</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Particle size</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Rapid prototyping</subject><subject>Reflow soldering</subject><subject>Shear forces</subject><subject>Shear strength</subject><subject>Soldered joints</subject><subject>Solders</subject><subject>Solvents</subject><subject>Substrates</subject><subject>Surface preparation</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLAzEQhYMotmhf_AULvoiwmmyym-RFkFovUFCoPodsNqlbdpOaZAv-e1NavM3LDJxvDjMcAM4QvMKYw-teIoIIZiU8AGPEeZUjTsjhr3kEJiGsYCqMESv4MRhhgiGkFI3Bw8J1jfatXWbOZLNOq-idbVXIpq5fO6ttDJmzGb7LXxIVdZME2wwqthudLYY6RC-jDqfgyMgu6Mm-n4C3-9nr9DGfPz88TW_nucIMx5xVNVemQA3jkjUVqwhjRBZaUsIMrxqpac0LJDFFpDaKm1rRCkuDCk5MWsIn4Gbnux7qXjcq3edlJ9a-7aX_FE624q9i23exdBvBMKQlpMngYm_g3cegQxR9G5TuOmm1G4IoyrJEiSMkoef_0JUbvE3vbSlSwbKgZaIud5TyLgSvzfcxCIptROInIvwF-4uCAw</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>Podsiadły, Bartłomiej</creator><creator>Skalski, Andrzej</creator><creator>Słoma, Marcin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210709</creationdate><title>Soldering of Electronics Components on 3D-Printed Conductive Substrates</title><author>Podsiadły, Bartłomiej ; Skalski, Andrzej ; Słoma, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-86b9cf21d89a8d6864884a2ea748f96dae7b921a3714bfc9fbc763af1294fd893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Adhesives</topic><topic>Alloys</topic><topic>Circuits</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Electric components</topic><topic>Electric contacts</topic><topic>Electronic circuits</topic><topic>Electronic components</topic><topic>Electronics</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Mechanical cleaning</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Particle size</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Rapid prototyping</topic><topic>Reflow soldering</topic><topic>Shear forces</topic><topic>Shear strength</topic><topic>Soldered joints</topic><topic>Solders</topic><topic>Solvents</topic><topic>Substrates</topic><topic>Surface preparation</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podsiadły, Bartłomiej</creatorcontrib><creatorcontrib>Skalski, Andrzej</creatorcontrib><creatorcontrib>Słoma, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podsiadły, Bartłomiej</au><au>Skalski, Andrzej</au><au>Słoma, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soldering of Electronics Components on 3D-Printed Conductive Substrates</atitle><jtitle>Materials</jtitle><date>2021-07-09</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>3850</spage><pages>3850-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Rapid development of additive manufacturing and new composites materials with unique properties are promising tools for fabricating structural electronics. However, according to the typical maximum resolution of additive manufacturing methods, there is no possibility to fabricate all electrical components with these techniques. One way to produce complex structural electronic circuits is to merge 3D-printed elements with standard electronic components. Here, different soldering and surface preparation methods before soldering are tested to find the optimal method for soldering typical electronic components on conductive, 3D-printed, composite substrates. To determine the optimal soldering condition, the contact angles of solder joints fabricated in different conditions were measured. Additionally, the mechanical strength of the joints was measured using the shear force test. The research shows a possibility of fabricating strong, conductive solder joints on composites substrates prepared by additive manufacturing. The results show that mechanical cleaning and using additional flux on the composite substrates are necessary to obtain high-quality solder joints. The most repeatable joints with the highest shear strength values were obtained using reflow soldering together with low-temperature SnBiAg solder alloy. A fabricated demonstrator is a sample of the successful merging of 3D-printed structural electronics with standard electronic components.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300771</pmid><doi>10.3390/ma14143850</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-07, Vol.14 (14), p.3850
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307507
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
Additive manufacturing
Adhesives
Alloys
Circuits
Composite materials
Contact angle
Electric components
Electric contacts
Electronic circuits
Electronic components
Electronics
High temperature
Low temperature
Mechanical cleaning
Mechanical properties
Methods
Particle size
Polymers
Production methods
Rapid prototyping
Reflow soldering
Shear forces
Shear strength
Soldered joints
Solders
Solvents
Substrates
Surface preparation
Three dimensional composites
Three dimensional printing
title Soldering of Electronics Components on 3D-Printed Conductive Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soldering%20of%20Electronics%20Components%20on%203D-Printed%20Conductive%20Substrates&rft.jtitle=Materials&rft.au=Podsiad%C5%82y,%20Bart%C5%82omiej&rft.date=2021-07-09&rft.volume=14&rft.issue=14&rft.spage=3850&rft.pages=3850-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14143850&rft_dat=%3Cproquest_pubme%3E2555107344%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554605275&rft_id=info:pmid/34300771&rfr_iscdi=true