Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β
Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (29), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 29 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Tartell, Michael A. Boulias, Konstantinos Hoffmann, Gabriela Brunsting Bloyet, Louis-Marie Greer, Eric Lieberman Whelan, Sean P. J. |
description | Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m⁷Gpppm⁶Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-β. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-β treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m⁷Gpppm⁶Am. This work identifies a function of PCIF1 and cap-proximal m⁶Am in attenuation of the host response to VSV infection that likely extends to other viruses. |
doi_str_mv | 10.1073/pnas.2025769118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052553</jstor_id><sourcerecordid>27052553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d4715adec6824b2f421fd1b0bb812488846affba9943d7087cc1a7387949627d3</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EotPCmhUoEhtYpL12HP9skEYjSisNP0KwthzHYTLK2IPtjDSvxYP0mXCUMkBXtu797jnXPgi9wHCJgVdXe6fjJQFScyYxFo_QAoPEJaMSHqMFAOGloISeofMYtwAgawFP0VlFCWOyxgvUfrRpcxx06r0rfFcc-qCHYvf107Iwel_EFEaTxmBj0RyLL6vba1zolKwbdcq1tLGFdqmfp7SZbuk46fQu2dDZ4F159-sZetLpIdrn9-cF-n79_tvqplx__nC7Wq5LQzlPZUs5rnVrDROENqSjBHctbqBpBCZUCEGZ7rpGS0mrloPgxmDNK8EllYzwtrpA72bd_djsbGusS3kvtQ_9Toej8rpX_3dcv1E__EGJCng2zwJvZ4HNg7Gb5VpNNaBcVnnZw8S-uTcL_udoY1K7Pho7DNpZP0ZF6ppIwYBARl8_QLd-DC5_xUTVmDNCJ8GrmTLBxxhsd9oAg5rSVlPa6m_aeeLVv-898X_izcDLGdjG5MOpTzjU2biqfgPbrrAR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555176241</pqid></control><display><type>article</type><title>Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Tartell, Michael A. ; Boulias, Konstantinos ; Hoffmann, Gabriela Brunsting ; Bloyet, Louis-Marie ; Greer, Eric Lieberman ; Whelan, Sean P. J.</creator><creatorcontrib>Tartell, Michael A. ; Boulias, Konstantinos ; Hoffmann, Gabriela Brunsting ; Bloyet, Louis-Marie ; Greer, Eric Lieberman ; Whelan, Sean P. J.</creatorcontrib><description>Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m⁷Gpppm⁶Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-β. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-β treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m⁷Gpppm⁶Am. This work identifies a function of PCIF1 and cap-proximal m⁶Am in attenuation of the host response to VSV infection that likely extends to other viruses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2025769118</identifier><identifier>PMID: 34266951</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - immunology ; Adaptor Proteins, Signal Transducing - metabolism ; Adenosine ; Antiviral activity ; Attenuation ; Biological Sciences ; Gene expression ; Host-Pathogen Interactions ; Humans ; Infectivity ; Interferon ; Interferon-beta - genetics ; Interferon-beta - immunology ; Life Sciences ; Measles ; Methylase ; Methylation ; Microbiology and Parasitology ; mRNA stability ; Nuclear Proteins - genetics ; Nuclear Proteins - immunology ; Nuclear Proteins - metabolism ; Rabies ; RNA Caps - genetics ; RNA Caps - metabolism ; RNA modification ; RNA Stability ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Viral - chemistry ; RNA, Viral - genetics ; RNA, Viral - metabolism ; Stomatitis ; Substrates ; Vesicular Stomatitis - genetics ; Vesicular Stomatitis - immunology ; Vesicular Stomatitis - metabolism ; Vesicular Stomatitis - virology ; Vesicular stomatitis Indiana virus - chemistry ; Vesicular stomatitis Indiana virus - genetics ; Vesicular stomatitis Indiana virus - metabolism ; Viral infections ; Virology ; Virus Replication ; Viruses ; β-Interferon</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-10</ispartof><rights>Copyright National Academy of Sciences Jul 20, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d4715adec6824b2f421fd1b0bb812488846affba9943d7087cc1a7387949627d3</citedby><cites>FETCH-LOGICAL-c477t-d4715adec6824b2f421fd1b0bb812488846affba9943d7087cc1a7387949627d3</cites><orcidid>0000-0003-1564-8590 ; 0000-0002-7501-7371 ; 0000-0002-4518-4187 ; 0000-0001-7758-898X ; 0000-0002-5648-3190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052553$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052553$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34266951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04793477$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tartell, Michael A.</creatorcontrib><creatorcontrib>Boulias, Konstantinos</creatorcontrib><creatorcontrib>Hoffmann, Gabriela Brunsting</creatorcontrib><creatorcontrib>Bloyet, Louis-Marie</creatorcontrib><creatorcontrib>Greer, Eric Lieberman</creatorcontrib><creatorcontrib>Whelan, Sean P. J.</creatorcontrib><title>Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m⁷Gpppm⁶Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-β. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-β treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m⁷Gpppm⁶Am. This work identifies a function of PCIF1 and cap-proximal m⁶Am in attenuation of the host response to VSV infection that likely extends to other viruses.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - immunology</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adenosine</subject><subject>Antiviral activity</subject><subject>Attenuation</subject><subject>Biological Sciences</subject><subject>Gene expression</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Infectivity</subject><subject>Interferon</subject><subject>Interferon-beta - genetics</subject><subject>Interferon-beta - immunology</subject><subject>Life Sciences</subject><subject>Measles</subject><subject>Methylase</subject><subject>Methylation</subject><subject>Microbiology and Parasitology</subject><subject>mRNA stability</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - immunology</subject><subject>Nuclear Proteins - metabolism</subject><subject>Rabies</subject><subject>RNA Caps - genetics</subject><subject>RNA Caps - metabolism</subject><subject>RNA modification</subject><subject>RNA Stability</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Viral - chemistry</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - metabolism</subject><subject>Stomatitis</subject><subject>Substrates</subject><subject>Vesicular Stomatitis - genetics</subject><subject>Vesicular Stomatitis - immunology</subject><subject>Vesicular Stomatitis - metabolism</subject><subject>Vesicular Stomatitis - virology</subject><subject>Vesicular stomatitis Indiana virus - chemistry</subject><subject>Vesicular stomatitis Indiana virus - genetics</subject><subject>Vesicular stomatitis Indiana virus - metabolism</subject><subject>Viral infections</subject><subject>Virology</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>β-Interferon</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1u1DAUhS0EotPCmhUoEhtYpL12HP9skEYjSisNP0KwthzHYTLK2IPtjDSvxYP0mXCUMkBXtu797jnXPgi9wHCJgVdXe6fjJQFScyYxFo_QAoPEJaMSHqMFAOGloISeofMYtwAgawFP0VlFCWOyxgvUfrRpcxx06r0rfFcc-qCHYvf107Iwel_EFEaTxmBj0RyLL6vba1zolKwbdcq1tLGFdqmfp7SZbuk46fQu2dDZ4F159-sZetLpIdrn9-cF-n79_tvqplx__nC7Wq5LQzlPZUs5rnVrDROENqSjBHctbqBpBCZUCEGZ7rpGS0mrloPgxmDNK8EllYzwtrpA72bd_djsbGusS3kvtQ_9Toej8rpX_3dcv1E__EGJCng2zwJvZ4HNg7Gb5VpNNaBcVnnZw8S-uTcL_udoY1K7Pho7DNpZP0ZF6ppIwYBARl8_QLd-DC5_xUTVmDNCJ8GrmTLBxxhsd9oAg5rSVlPa6m_aeeLVv-898X_izcDLGdjG5MOpTzjU2biqfgPbrrAR</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Tartell, Michael A.</creator><creator>Boulias, Konstantinos</creator><creator>Hoffmann, Gabriela Brunsting</creator><creator>Bloyet, Louis-Marie</creator><creator>Greer, Eric Lieberman</creator><creator>Whelan, Sean P. J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1564-8590</orcidid><orcidid>https://orcid.org/0000-0002-7501-7371</orcidid><orcidid>https://orcid.org/0000-0002-4518-4187</orcidid><orcidid>https://orcid.org/0000-0001-7758-898X</orcidid><orcidid>https://orcid.org/0000-0002-5648-3190</orcidid></search><sort><creationdate>20210720</creationdate><title>Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β</title><author>Tartell, Michael A. ; Boulias, Konstantinos ; Hoffmann, Gabriela Brunsting ; Bloyet, Louis-Marie ; Greer, Eric Lieberman ; Whelan, Sean P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d4715adec6824b2f421fd1b0bb812488846affba9943d7087cc1a7387949627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - immunology</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adenosine</topic><topic>Antiviral activity</topic><topic>Attenuation</topic><topic>Biological Sciences</topic><topic>Gene expression</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Infectivity</topic><topic>Interferon</topic><topic>Interferon-beta - genetics</topic><topic>Interferon-beta - immunology</topic><topic>Life Sciences</topic><topic>Measles</topic><topic>Methylase</topic><topic>Methylation</topic><topic>Microbiology and Parasitology</topic><topic>mRNA stability</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - immunology</topic><topic>Nuclear Proteins - metabolism</topic><topic>Rabies</topic><topic>RNA Caps - genetics</topic><topic>RNA Caps - metabolism</topic><topic>RNA modification</topic><topic>RNA Stability</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Viral - chemistry</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - metabolism</topic><topic>Stomatitis</topic><topic>Substrates</topic><topic>Vesicular Stomatitis - genetics</topic><topic>Vesicular Stomatitis - immunology</topic><topic>Vesicular Stomatitis - metabolism</topic><topic>Vesicular Stomatitis - virology</topic><topic>Vesicular stomatitis Indiana virus - chemistry</topic><topic>Vesicular stomatitis Indiana virus - genetics</topic><topic>Vesicular stomatitis Indiana virus - metabolism</topic><topic>Viral infections</topic><topic>Virology</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>β-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tartell, Michael A.</creatorcontrib><creatorcontrib>Boulias, Konstantinos</creatorcontrib><creatorcontrib>Hoffmann, Gabriela Brunsting</creatorcontrib><creatorcontrib>Bloyet, Louis-Marie</creatorcontrib><creatorcontrib>Greer, Eric Lieberman</creatorcontrib><creatorcontrib>Whelan, Sean P. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tartell, Michael A.</au><au>Boulias, Konstantinos</au><au>Hoffmann, Gabriela Brunsting</au><au>Bloyet, Louis-Marie</au><au>Greer, Eric Lieberman</au><au>Whelan, Sean P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>118</volume><issue>29</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m⁷Gpppm⁶Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-β. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-β treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m⁷Gpppm⁶Am. This work identifies a function of PCIF1 and cap-proximal m⁶Am in attenuation of the host response to VSV infection that likely extends to other viruses.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34266951</pmid><doi>10.1073/pnas.2025769118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1564-8590</orcidid><orcidid>https://orcid.org/0000-0002-7501-7371</orcidid><orcidid>https://orcid.org/0000-0002-4518-4187</orcidid><orcidid>https://orcid.org/0000-0001-7758-898X</orcidid><orcidid>https://orcid.org/0000-0002-5648-3190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (29), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8307471 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection; JSTOR |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - immunology Adaptor Proteins, Signal Transducing - metabolism Adenosine Antiviral activity Attenuation Biological Sciences Gene expression Host-Pathogen Interactions Humans Infectivity Interferon Interferon-beta - genetics Interferon-beta - immunology Life Sciences Measles Methylase Methylation Microbiology and Parasitology mRNA stability Nuclear Proteins - genetics Nuclear Proteins - immunology Nuclear Proteins - metabolism Rabies RNA Caps - genetics RNA Caps - metabolism RNA modification RNA Stability RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism Stomatitis Substrates Vesicular Stomatitis - genetics Vesicular Stomatitis - immunology Vesicular Stomatitis - metabolism Vesicular Stomatitis - virology Vesicular stomatitis Indiana virus - chemistry Vesicular stomatitis Indiana virus - genetics Vesicular stomatitis Indiana virus - metabolism Viral infections Virology Virus Replication Viruses β-Interferon |
title | Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylation%20of%20viral%20mRNA%20cap%20structures%20by%20PCIF1%20attenuates%20the%20antiviral%20activity%20of%20interferon-%CE%B2&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tartell,%20Michael%20A.&rft.date=2021-07-20&rft.volume=118&rft.issue=29&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2025769118&rft_dat=%3Cjstor_pubme%3E27052553%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555176241&rft_id=info:pmid/34266951&rft_jstor_id=27052553&rfr_iscdi=true |