Computational Generation of Virtual Concrete Mesostructures

Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-07, Vol.14 (14), p.3782
Hauptverfasser: Holla, Vijaya, Vu, Giao, Timothy, Jithender J., Diewald, Fabian, Gehlen, Christoph, Meschke, Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 3782
container_title Materials
container_volume 14
creator Holla, Vijaya
Vu, Giao
Timothy, Jithender J.
Diewald, Fabian
Gehlen, Christoph
Meschke, Günther
description Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.
doi_str_mv 10.3390/ma14143782
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554605711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobszd-AsG3ohQTZo0TRAEKTqFiTfqbcjSE-1om5kPwX9vncOvc3O-Hl4O50XokOBTSiU-6zRhhNFS5DtoTKTkGZGM7f6qR2gawgoPQSkRudxHI8ooxiXOx-i8ct06RR0b1-t2Noce_KaZOTt7anxMw7RyvfEQYXYHwYXok4nJQzhAe1a3AabbPEGP11cP1U22uJ_fVpeLzDAmY1ZbJpihNSvz0hBtS1Izw7m0nNe4ltyCwHgpjdBW5tjkQlMAXBAhoC6opXSCLr5012nZQW2gj163au2bTvt35XSj_m765kU9uzclKOaCl4PA8VbAu9cEIaquCQbaVvfgUlB5URQEy7xkA3r0D1255IfXbCjGcVESMlAnX5TxLgQP9vsYgtWnLerHFvoBBS5-RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554605711</pqid></control><display><type>article</type><title>Computational Generation of Virtual Concrete Mesostructures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</creator><creatorcontrib>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</creatorcontrib><description>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14143782</identifier><identifier>PMID: 34300702</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aggregates ; Algorithms ; Artificial neural networks ; Composite materials ; Concrete ; Concrete aggregates ; Crack initiation ; Elastic properties ; Geometry ; Laboratories ; Laboratory tests ; Medical imaging ; Morphology ; Polyhedra ; Size distribution ; Software ; Stress concentration</subject><ispartof>Materials, 2021-07, Vol.14 (14), p.3782</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</citedby><cites>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</cites><orcidid>0000-0002-3653-0818 ; 0000-0003-2277-1327 ; 0000-0002-7877-0983 ; 0000-0001-6791-6046 ; 0000-0002-1975-6524 ; 0000-0002-1214-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Holla, Vijaya</creatorcontrib><creatorcontrib>Vu, Giao</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Diewald, Fabian</creatorcontrib><creatorcontrib>Gehlen, Christoph</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><title>Computational Generation of Virtual Concrete Mesostructures</title><title>Materials</title><description>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Composite materials</subject><subject>Concrete</subject><subject>Concrete aggregates</subject><subject>Crack initiation</subject><subject>Elastic properties</subject><subject>Geometry</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Polyhedra</subject><subject>Size distribution</subject><subject>Software</subject><subject>Stress concentration</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LwzAUhoMobszd-AsG3ohQTZo0TRAEKTqFiTfqbcjSE-1om5kPwX9vncOvc3O-Hl4O50XokOBTSiU-6zRhhNFS5DtoTKTkGZGM7f6qR2gawgoPQSkRudxHI8ooxiXOx-i8ct06RR0b1-t2Noce_KaZOTt7anxMw7RyvfEQYXYHwYXok4nJQzhAe1a3AabbPEGP11cP1U22uJ_fVpeLzDAmY1ZbJpihNSvz0hBtS1Izw7m0nNe4ltyCwHgpjdBW5tjkQlMAXBAhoC6opXSCLr5012nZQW2gj163au2bTvt35XSj_m765kU9uzclKOaCl4PA8VbAu9cEIaquCQbaVvfgUlB5URQEy7xkA3r0D1255IfXbCjGcVESMlAnX5TxLgQP9vsYgtWnLerHFvoBBS5-RA</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Holla, Vijaya</creator><creator>Vu, Giao</creator><creator>Timothy, Jithender J.</creator><creator>Diewald, Fabian</creator><creator>Gehlen, Christoph</creator><creator>Meschke, Günther</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3653-0818</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-7877-0983</orcidid><orcidid>https://orcid.org/0000-0001-6791-6046</orcidid><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0002-1214-3960</orcidid></search><sort><creationdate>20210706</creationdate><title>Computational Generation of Virtual Concrete Mesostructures</title><author>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Composite materials</topic><topic>Concrete</topic><topic>Concrete aggregates</topic><topic>Crack initiation</topic><topic>Elastic properties</topic><topic>Geometry</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Polyhedra</topic><topic>Size distribution</topic><topic>Software</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holla, Vijaya</creatorcontrib><creatorcontrib>Vu, Giao</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Diewald, Fabian</creatorcontrib><creatorcontrib>Gehlen, Christoph</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holla, Vijaya</au><au>Vu, Giao</au><au>Timothy, Jithender J.</au><au>Diewald, Fabian</au><au>Gehlen, Christoph</au><au>Meschke, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Generation of Virtual Concrete Mesostructures</atitle><jtitle>Materials</jtitle><date>2021-07-06</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>3782</spage><pages>3782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300702</pmid><doi>10.3390/ma14143782</doi><orcidid>https://orcid.org/0000-0002-3653-0818</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-7877-0983</orcidid><orcidid>https://orcid.org/0000-0001-6791-6046</orcidid><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0002-1214-3960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-07, Vol.14 (14), p.3782
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306867
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aggregates
Algorithms
Artificial neural networks
Composite materials
Concrete
Concrete aggregates
Crack initiation
Elastic properties
Geometry
Laboratories
Laboratory tests
Medical imaging
Morphology
Polyhedra
Size distribution
Software
Stress concentration
title Computational Generation of Virtual Concrete Mesostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Generation%20of%20Virtual%20Concrete%20Mesostructures&rft.jtitle=Materials&rft.au=Holla,%20Vijaya&rft.date=2021-07-06&rft.volume=14&rft.issue=14&rft.spage=3782&rft.pages=3782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14143782&rft_dat=%3Cproquest_pubme%3E2554605711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554605711&rft_id=info:pmid/34300702&rfr_iscdi=true