Computational Generation of Virtual Concrete Mesostructures
Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies...
Gespeichert in:
Veröffentlicht in: | Materials 2021-07, Vol.14 (14), p.3782 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 3782 |
container_title | Materials |
container_volume | 14 |
creator | Holla, Vijaya Vu, Giao Timothy, Jithender J. Diewald, Fabian Gehlen, Christoph Meschke, Günther |
description | Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data. |
doi_str_mv | 10.3390/ma14143782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554605711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobszd-AsG3ohQTZo0TRAEKTqFiTfqbcjSE-1om5kPwX9vncOvc3O-Hl4O50XokOBTSiU-6zRhhNFS5DtoTKTkGZGM7f6qR2gawgoPQSkRudxHI8ooxiXOx-i8ct06RR0b1-t2Noce_KaZOTt7anxMw7RyvfEQYXYHwYXok4nJQzhAe1a3AabbPEGP11cP1U22uJ_fVpeLzDAmY1ZbJpihNSvz0hBtS1Izw7m0nNe4ltyCwHgpjdBW5tjkQlMAXBAhoC6opXSCLr5012nZQW2gj163au2bTvt35XSj_m765kU9uzclKOaCl4PA8VbAu9cEIaquCQbaVvfgUlB5URQEy7xkA3r0D1255IfXbCjGcVESMlAnX5TxLgQP9vsYgtWnLerHFvoBBS5-RA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554605711</pqid></control><display><type>article</type><title>Computational Generation of Virtual Concrete Mesostructures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</creator><creatorcontrib>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</creatorcontrib><description>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14143782</identifier><identifier>PMID: 34300702</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aggregates ; Algorithms ; Artificial neural networks ; Composite materials ; Concrete ; Concrete aggregates ; Crack initiation ; Elastic properties ; Geometry ; Laboratories ; Laboratory tests ; Medical imaging ; Morphology ; Polyhedra ; Size distribution ; Software ; Stress concentration</subject><ispartof>Materials, 2021-07, Vol.14 (14), p.3782</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</citedby><cites>FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</cites><orcidid>0000-0002-3653-0818 ; 0000-0003-2277-1327 ; 0000-0002-7877-0983 ; 0000-0001-6791-6046 ; 0000-0002-1975-6524 ; 0000-0002-1214-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Holla, Vijaya</creatorcontrib><creatorcontrib>Vu, Giao</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Diewald, Fabian</creatorcontrib><creatorcontrib>Gehlen, Christoph</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><title>Computational Generation of Virtual Concrete Mesostructures</title><title>Materials</title><description>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Composite materials</subject><subject>Concrete</subject><subject>Concrete aggregates</subject><subject>Crack initiation</subject><subject>Elastic properties</subject><subject>Geometry</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Polyhedra</subject><subject>Size distribution</subject><subject>Software</subject><subject>Stress concentration</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LwzAUhoMobszd-AsG3ohQTZo0TRAEKTqFiTfqbcjSE-1om5kPwX9vncOvc3O-Hl4O50XokOBTSiU-6zRhhNFS5DtoTKTkGZGM7f6qR2gawgoPQSkRudxHI8ooxiXOx-i8ct06RR0b1-t2Noce_KaZOTt7anxMw7RyvfEQYXYHwYXok4nJQzhAe1a3AabbPEGP11cP1U22uJ_fVpeLzDAmY1ZbJpihNSvz0hBtS1Izw7m0nNe4ltyCwHgpjdBW5tjkQlMAXBAhoC6opXSCLr5012nZQW2gj163au2bTvt35XSj_m765kU9uzclKOaCl4PA8VbAu9cEIaquCQbaVvfgUlB5URQEy7xkA3r0D1255IfXbCjGcVESMlAnX5TxLgQP9vsYgtWnLerHFvoBBS5-RA</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Holla, Vijaya</creator><creator>Vu, Giao</creator><creator>Timothy, Jithender J.</creator><creator>Diewald, Fabian</creator><creator>Gehlen, Christoph</creator><creator>Meschke, Günther</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3653-0818</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-7877-0983</orcidid><orcidid>https://orcid.org/0000-0001-6791-6046</orcidid><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0002-1214-3960</orcidid></search><sort><creationdate>20210706</creationdate><title>Computational Generation of Virtual Concrete Mesostructures</title><author>Holla, Vijaya ; Vu, Giao ; Timothy, Jithender J. ; Diewald, Fabian ; Gehlen, Christoph ; Meschke, Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-df484c3d4727c1af71d4c669f66d0d96fe800b9c8af920c28a3ee05188ed53f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Composite materials</topic><topic>Concrete</topic><topic>Concrete aggregates</topic><topic>Crack initiation</topic><topic>Elastic properties</topic><topic>Geometry</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Polyhedra</topic><topic>Size distribution</topic><topic>Software</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holla, Vijaya</creatorcontrib><creatorcontrib>Vu, Giao</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Diewald, Fabian</creatorcontrib><creatorcontrib>Gehlen, Christoph</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holla, Vijaya</au><au>Vu, Giao</au><au>Timothy, Jithender J.</au><au>Diewald, Fabian</au><au>Gehlen, Christoph</au><au>Meschke, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Generation of Virtual Concrete Mesostructures</atitle><jtitle>Materials</jtitle><date>2021-07-06</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>3782</spage><pages>3782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Concrete is a heterogeneous material with a disordered material morphology that strongly governs the behaviour of the material. In this contribution, we present a computational tool called the Concrete Mesostructure Generator (CMG) for the generation of ultra-realistic virtual concrete morphologies for mesoscale and multiscale computational modelling and the simulation of concrete. Given an aggregate size distribution, realistic generic concrete aggregates are generated by a sequential reduction of a cuboid to generate a polyhedron with multiple faces. Thereafter, concave depressions are introduced in the polyhedron using Gaussian surfaces. The generated aggregates are assembled into the mesostructure using a hierarchic random sequential adsorption algorithm. The virtual mesostructures are first calibrated using laboratory measurements of aggregate distributions. The model is validated by comparing the elastic properties obtained from laboratory testing of concrete specimens with the elastic properties obtained using computational homogenisation of virtual concrete mesostructures. Finally, a 3D-convolutional neural network is trained to directly generate elastic properties from voxel data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300702</pmid><doi>10.3390/ma14143782</doi><orcidid>https://orcid.org/0000-0002-3653-0818</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-7877-0983</orcidid><orcidid>https://orcid.org/0000-0001-6791-6046</orcidid><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0002-1214-3960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-07, Vol.14 (14), p.3782 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306867 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Aggregates Algorithms Artificial neural networks Composite materials Concrete Concrete aggregates Crack initiation Elastic properties Geometry Laboratories Laboratory tests Medical imaging Morphology Polyhedra Size distribution Software Stress concentration |
title | Computational Generation of Virtual Concrete Mesostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Generation%20of%20Virtual%20Concrete%20Mesostructures&rft.jtitle=Materials&rft.au=Holla,%20Vijaya&rft.date=2021-07-06&rft.volume=14&rft.issue=14&rft.spage=3782&rft.pages=3782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14143782&rft_dat=%3Cproquest_pubme%3E2554605711%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554605711&rft_id=info:pmid/34300702&rfr_iscdi=true |