Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding

From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-07, Vol.14 (14), p.4018
Hauptverfasser: Zhang, Shuming, Xu, Yuanming, Fu, Hao, Wen, Yaowei, Wang, Yibing, Liu, Xinling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 4018
container_title Materials
container_volume 14
creator Zhang, Shuming
Xu, Yuanming
Fu, Hao
Wen, Yaowei
Wang, Yibing
Liu, Xinling
description From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.
doi_str_mv 10.3390/ma14144018
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554606392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</originalsourceid><addsrcrecordid>eNpdkd1O5SAUhclEMxr1Zp6AxBtjUoVCW7gxmdTf5Ew0ceaaIOwe0RaO0KrnCXxt0WOccbhhZ-2PlbXZCP2g5IAxSQ4HTTnlnFDxDW1SKeuCSs7X_qk30E5KdyQfxqgo5Xe0wTgjRLJmE73MwlPRLk0P-FSPbj4BbqM29_jCu9FlJXh87YapX5XaWzxzHeCrCNaZdy10-Co8WYj4elpA1H0flrgNPrmsOT_PVqafUkaLX3qM7jkLI8ROG8DHcBO8zdA2Wu90n2Dn495Cf05Pfrfnxezy7KL9OSsME2wseNdVoCtZ1rqxzJSlqMr8DaIRklqrawOGdFxaUVfEaGFZSXiTu_m1lMCBbaGjle9iuhnAGvBjTqwW0Q06LlXQTn3teHer5uFRCUaYoE022PswiOFhgjSqwSUDfa89hCmpsqoqSnLAKqO7_6F3YYo-j_dG8ZrUTJaZ2l9RJoaUInSfYShRbytWf1fMXgGUrpj-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554606392</pqid></control><display><type>article</type><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</creator><creatorcontrib>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</creatorcontrib><description>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14144018</identifier><identifier>PMID: 34300937</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; CAD ; Computer aided design ; Crack initiation ; Crack propagation ; Damage ; Debonding ; Energy ; Evolution ; Experiments ; Fatigue failure ; Fatigue life ; Finite element method ; Fracture mechanics ; Inclusions ; Interfacial cracks ; Life prediction ; Low cycle fatigue ; Mathematical models ; Mechanical properties ; Nickel base alloys ; Prediction models ; Propagation ; Simulation ; Stress distribution ; Superalloys ; Turbines</subject><ispartof>Materials, 2021-07, Vol.14 (14), p.4018</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</citedby><cites>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Xu, Yuanming</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Wen, Yaowei</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><title>Materials</title><description>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</description><subject>Algorithms</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Debonding</subject><subject>Energy</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Inclusions</subject><subject>Interfacial cracks</subject><subject>Life prediction</subject><subject>Low cycle fatigue</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nickel base alloys</subject><subject>Prediction models</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Stress distribution</subject><subject>Superalloys</subject><subject>Turbines</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1O5SAUhclEMxr1Zp6AxBtjUoVCW7gxmdTf5Ew0ceaaIOwe0RaO0KrnCXxt0WOccbhhZ-2PlbXZCP2g5IAxSQ4HTTnlnFDxDW1SKeuCSs7X_qk30E5KdyQfxqgo5Xe0wTgjRLJmE73MwlPRLk0P-FSPbj4BbqM29_jCu9FlJXh87YapX5XaWzxzHeCrCNaZdy10-Co8WYj4elpA1H0flrgNPrmsOT_PVqafUkaLX3qM7jkLI8ROG8DHcBO8zdA2Wu90n2Dn495Cf05Pfrfnxezy7KL9OSsME2wseNdVoCtZ1rqxzJSlqMr8DaIRklqrawOGdFxaUVfEaGFZSXiTu_m1lMCBbaGjle9iuhnAGvBjTqwW0Q06LlXQTn3teHer5uFRCUaYoE022PswiOFhgjSqwSUDfa89hCmpsqoqSnLAKqO7_6F3YYo-j_dG8ZrUTJaZ2l9RJoaUInSfYShRbytWf1fMXgGUrpj-</recordid><startdate>20210718</startdate><enddate>20210718</enddate><creator>Zhang, Shuming</creator><creator>Xu, Yuanming</creator><creator>Fu, Hao</creator><creator>Wen, Yaowei</creator><creator>Wang, Yibing</creator><creator>Liu, Xinling</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210718</creationdate><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><author>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Debonding</topic><topic>Energy</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Inclusions</topic><topic>Interfacial cracks</topic><topic>Life prediction</topic><topic>Low cycle fatigue</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nickel base alloys</topic><topic>Prediction models</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Stress distribution</topic><topic>Superalloys</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Xu, Yuanming</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Wen, Yaowei</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuming</au><au>Xu, Yuanming</au><au>Fu, Hao</au><au>Wen, Yaowei</au><au>Wang, Yibing</au><au>Liu, Xinling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</atitle><jtitle>Materials</jtitle><date>2021-07-18</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>4018</spage><pages>4018-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300937</pmid><doi>10.3390/ma14144018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-07, Vol.14 (14), p.4018
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303817
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Algorithms
CAD
Computer aided design
Crack initiation
Crack propagation
Damage
Debonding
Energy
Evolution
Experiments
Fatigue failure
Fatigue life
Finite element method
Fracture mechanics
Inclusions
Interfacial cracks
Life prediction
Low cycle fatigue
Mathematical models
Mechanical properties
Nickel base alloys
Prediction models
Propagation
Simulation
Stress distribution
Superalloys
Turbines
title Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Cycle%20Fatigue%20Crack%20Initiation%20Simulation%20and%20Life%20Prediction%20of%20Powder%20Superalloy%20Considering%20Inclusion-Matrix%20Interface%20Debonding&rft.jtitle=Materials&rft.au=Zhang,%20Shuming&rft.date=2021-07-18&rft.volume=14&rft.issue=14&rft.spage=4018&rft.pages=4018-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14144018&rft_dat=%3Cproquest_pubme%3E2554606392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554606392&rft_id=info:pmid/34300937&rfr_iscdi=true