Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding
From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder su...
Gespeichert in:
Veröffentlicht in: | Materials 2021-07, Vol.14 (14), p.4018 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 4018 |
container_title | Materials |
container_volume | 14 |
creator | Zhang, Shuming Xu, Yuanming Fu, Hao Wen, Yaowei Wang, Yibing Liu, Xinling |
description | From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored. |
doi_str_mv | 10.3390/ma14144018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554606392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</originalsourceid><addsrcrecordid>eNpdkd1O5SAUhclEMxr1Zp6AxBtjUoVCW7gxmdTf5Ew0ceaaIOwe0RaO0KrnCXxt0WOccbhhZ-2PlbXZCP2g5IAxSQ4HTTnlnFDxDW1SKeuCSs7X_qk30E5KdyQfxqgo5Xe0wTgjRLJmE73MwlPRLk0P-FSPbj4BbqM29_jCu9FlJXh87YapX5XaWzxzHeCrCNaZdy10-Co8WYj4elpA1H0flrgNPrmsOT_PVqafUkaLX3qM7jkLI8ROG8DHcBO8zdA2Wu90n2Dn495Cf05Pfrfnxezy7KL9OSsME2wseNdVoCtZ1rqxzJSlqMr8DaIRklqrawOGdFxaUVfEaGFZSXiTu_m1lMCBbaGjle9iuhnAGvBjTqwW0Q06LlXQTn3teHer5uFRCUaYoE022PswiOFhgjSqwSUDfa89hCmpsqoqSnLAKqO7_6F3YYo-j_dG8ZrUTJaZ2l9RJoaUInSfYShRbytWf1fMXgGUrpj-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554606392</pqid></control><display><type>article</type><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</creator><creatorcontrib>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</creatorcontrib><description>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14144018</identifier><identifier>PMID: 34300937</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; CAD ; Computer aided design ; Crack initiation ; Crack propagation ; Damage ; Debonding ; Energy ; Evolution ; Experiments ; Fatigue failure ; Fatigue life ; Finite element method ; Fracture mechanics ; Inclusions ; Interfacial cracks ; Life prediction ; Low cycle fatigue ; Mathematical models ; Mechanical properties ; Nickel base alloys ; Prediction models ; Propagation ; Simulation ; Stress distribution ; Superalloys ; Turbines</subject><ispartof>Materials, 2021-07, Vol.14 (14), p.4018</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</citedby><cites>FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Xu, Yuanming</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Wen, Yaowei</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><title>Materials</title><description>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</description><subject>Algorithms</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Debonding</subject><subject>Energy</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Inclusions</subject><subject>Interfacial cracks</subject><subject>Life prediction</subject><subject>Low cycle fatigue</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nickel base alloys</subject><subject>Prediction models</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Stress distribution</subject><subject>Superalloys</subject><subject>Turbines</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd1O5SAUhclEMxr1Zp6AxBtjUoVCW7gxmdTf5Ew0ceaaIOwe0RaO0KrnCXxt0WOccbhhZ-2PlbXZCP2g5IAxSQ4HTTnlnFDxDW1SKeuCSs7X_qk30E5KdyQfxqgo5Xe0wTgjRLJmE73MwlPRLk0P-FSPbj4BbqM29_jCu9FlJXh87YapX5XaWzxzHeCrCNaZdy10-Co8WYj4elpA1H0flrgNPrmsOT_PVqafUkaLX3qM7jkLI8ROG8DHcBO8zdA2Wu90n2Dn495Cf05Pfrfnxezy7KL9OSsME2wseNdVoCtZ1rqxzJSlqMr8DaIRklqrawOGdFxaUVfEaGFZSXiTu_m1lMCBbaGjle9iuhnAGvBjTqwW0Q06LlXQTn3teHer5uFRCUaYoE022PswiOFhgjSqwSUDfa89hCmpsqoqSnLAKqO7_6F3YYo-j_dG8ZrUTJaZ2l9RJoaUInSfYShRbytWf1fMXgGUrpj-</recordid><startdate>20210718</startdate><enddate>20210718</enddate><creator>Zhang, Shuming</creator><creator>Xu, Yuanming</creator><creator>Fu, Hao</creator><creator>Wen, Yaowei</creator><creator>Wang, Yibing</creator><creator>Liu, Xinling</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210718</creationdate><title>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</title><author>Zhang, Shuming ; Xu, Yuanming ; Fu, Hao ; Wen, Yaowei ; Wang, Yibing ; Liu, Xinling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4ff5ea5926a7d3c2285233987891dda6cec0f49d8650ca8d32047878c3899e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Debonding</topic><topic>Energy</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Inclusions</topic><topic>Interfacial cracks</topic><topic>Life prediction</topic><topic>Low cycle fatigue</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nickel base alloys</topic><topic>Prediction models</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Stress distribution</topic><topic>Superalloys</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuming</creatorcontrib><creatorcontrib>Xu, Yuanming</creatorcontrib><creatorcontrib>Fu, Hao</creatorcontrib><creatorcontrib>Wen, Yaowei</creatorcontrib><creatorcontrib>Wang, Yibing</creatorcontrib><creatorcontrib>Liu, Xinling</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuming</au><au>Xu, Yuanming</au><au>Fu, Hao</au><au>Wen, Yaowei</au><au>Wang, Yibing</au><au>Liu, Xinling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding</atitle><jtitle>Materials</jtitle><date>2021-07-18</date><risdate>2021</risdate><volume>14</volume><issue>14</issue><spage>4018</spage><pages>4018-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34300937</pmid><doi>10.3390/ma14144018</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-07, Vol.14 (14), p.4018 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8303817 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Algorithms CAD Computer aided design Crack initiation Crack propagation Damage Debonding Energy Evolution Experiments Fatigue failure Fatigue life Finite element method Fracture mechanics Inclusions Interfacial cracks Life prediction Low cycle fatigue Mathematical models Mechanical properties Nickel base alloys Prediction models Propagation Simulation Stress distribution Superalloys Turbines |
title | Low-Cycle Fatigue Crack Initiation Simulation and Life Prediction of Powder Superalloy Considering Inclusion-Matrix Interface Debonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Cycle%20Fatigue%20Crack%20Initiation%20Simulation%20and%20Life%20Prediction%20of%20Powder%20Superalloy%20Considering%20Inclusion-Matrix%20Interface%20Debonding&rft.jtitle=Materials&rft.au=Zhang,%20Shuming&rft.date=2021-07-18&rft.volume=14&rft.issue=14&rft.spage=4018&rft.pages=4018-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14144018&rft_dat=%3Cproquest_pubme%3E2554606392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554606392&rft_id=info:pmid/34300937&rfr_iscdi=true |