A novel contactless technique to measure water waves using a single photon avalanche diode detector array

Commonly deployed measurement systems for water waves are intrusive and measure a limited number of parameters. This results in difficulties in inferring detailed sea state information while additionally subjecting the system to environmental loading. Optical techniques offer a non-intrusive alterna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2021-03, Vol.477 (2247), p.20200457-20200457
Hauptverfasser: Zhang, R, Draycott, S, Gyongy, I, Ingram, D M, Underwood, I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20200457
container_issue 2247
container_start_page 20200457
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 477
creator Zhang, R
Draycott, S
Gyongy, I
Ingram, D M
Underwood, I
description Commonly deployed measurement systems for water waves are intrusive and measure a limited number of parameters. This results in difficulties in inferring detailed sea state information while additionally subjecting the system to environmental loading. Optical techniques offer a non-intrusive alternative, yet documented systems suffer a range of problems related to usability and performance. Here, we present experimental data obtained from a 256 × 256 Single Photon Avalanche Diode (SPAD) detector array used to measure water waves in a laboratory facility. 12 regular wave conditions are used to assess performance. Picosecond resolution time-of-flight measurements are obtained, without the use of dye, over an area of the water surface and processed to provide surface elevation data. The SPAD detector array is installed 0.487 m above the water surface and synchronized with a pulsed laser source with a wavelength of 532 nm and mean power
doi_str_mv 10.1098/rspa.2020.0457
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8300601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628676357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-94e777dd29b469e7909daa075b20f2aef4c1e39fc135e43c2f74c231f841bdd43</originalsourceid><addsrcrecordid>eNpVkctLJDEQxsOi7Pi67lFy9NJjnp3ORRBxV0Hwsp5DTbp6ppeezpikR_zvN40P9FJfIF--StWPkF-cLTmzzWVMO1gKJtiSKW1-kCOuDK-EVfVBOctaVZoJviDHKf1jjFndmJ9kITXXUqv6iPTXdAx7HKgPYwafB0yJZvSbsX-ekOZAtwhpikhfIGMsdY-JTqkf1xToLAPS3SbkMFLYwwCj3yBt-9CWiiUoh0ghRng9JYcdDAnP3vWEPP2-_XtzVz08_rm_uX6ovJY2V1ahMaZthV2p2qKxzLYAzOiVYJ0A7JTnKG3nudSopBedUV5I3jWKr9pWyRNy9Za7m1ZbbD2OOcLgdrHfQnx1AXr3_WbsN24d9q6RjNWMl4CL94AYyg5Sdts-eRzKbBim5EQtmtrUUptiXb5ZfQwpRew-23DmZj5u5uNmPm7mUx6cf_3cp_0DiPwPyo2PYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628676357</pqid></control><display><type>article</type><title>A novel contactless technique to measure water waves using a single photon avalanche diode detector array</title><source>Alma/SFX Local Collection</source><creator>Zhang, R ; Draycott, S ; Gyongy, I ; Ingram, D M ; Underwood, I</creator><creatorcontrib>Zhang, R ; Draycott, S ; Gyongy, I ; Ingram, D M ; Underwood, I</creatorcontrib><description>Commonly deployed measurement systems for water waves are intrusive and measure a limited number of parameters. This results in difficulties in inferring detailed sea state information while additionally subjecting the system to environmental loading. Optical techniques offer a non-intrusive alternative, yet documented systems suffer a range of problems related to usability and performance. Here, we present experimental data obtained from a 256 × 256 Single Photon Avalanche Diode (SPAD) detector array used to measure water waves in a laboratory facility. 12 regular wave conditions are used to assess performance. Picosecond resolution time-of-flight measurements are obtained, without the use of dye, over an area of the water surface and processed to provide surface elevation data. The SPAD detector array is installed 0.487 m above the water surface and synchronized with a pulsed laser source with a wavelength of 532 nm and mean power &lt;1 mW. Through analysis of the experimental results, and with the aid of an optical model, we demonstrate good performance up to a limiting steepness value, , of 0.11. Through this preliminary proof-of-concept study, we highlight the capability for SPAD-based systems to measure water waves within a given field-of-view simultaneously, while raising potential solutions for improving performance.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0457</identifier><identifier>PMID: 35153546</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2021-03, Vol.477 (2247), p.20200457-20200457</ispartof><rights>2021 The Authors.</rights><rights>2021 The Authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-94e777dd29b469e7909daa075b20f2aef4c1e39fc135e43c2f74c231f841bdd43</citedby><cites>FETCH-LOGICAL-c539t-94e777dd29b469e7909daa075b20f2aef4c1e39fc135e43c2f74c231f841bdd43</cites><orcidid>0000-0003-3931-7972 ; 0000-0002-7934-2892 ; 0000-0002-8669-8942 ; 0000-0002-7372-980X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35153546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, R</creatorcontrib><creatorcontrib>Draycott, S</creatorcontrib><creatorcontrib>Gyongy, I</creatorcontrib><creatorcontrib>Ingram, D M</creatorcontrib><creatorcontrib>Underwood, I</creatorcontrib><title>A novel contactless technique to measure water waves using a single photon avalanche diode detector array</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>Commonly deployed measurement systems for water waves are intrusive and measure a limited number of parameters. This results in difficulties in inferring detailed sea state information while additionally subjecting the system to environmental loading. Optical techniques offer a non-intrusive alternative, yet documented systems suffer a range of problems related to usability and performance. Here, we present experimental data obtained from a 256 × 256 Single Photon Avalanche Diode (SPAD) detector array used to measure water waves in a laboratory facility. 12 regular wave conditions are used to assess performance. Picosecond resolution time-of-flight measurements are obtained, without the use of dye, over an area of the water surface and processed to provide surface elevation data. The SPAD detector array is installed 0.487 m above the water surface and synchronized with a pulsed laser source with a wavelength of 532 nm and mean power &lt;1 mW. Through analysis of the experimental results, and with the aid of an optical model, we demonstrate good performance up to a limiting steepness value, , of 0.11. Through this preliminary proof-of-concept study, we highlight the capability for SPAD-based systems to measure water waves within a given field-of-view simultaneously, while raising potential solutions for improving performance.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkctLJDEQxsOi7Pi67lFy9NJjnp3ORRBxV0Hwsp5DTbp6ppeezpikR_zvN40P9FJfIF--StWPkF-cLTmzzWVMO1gKJtiSKW1-kCOuDK-EVfVBOctaVZoJviDHKf1jjFndmJ9kITXXUqv6iPTXdAx7HKgPYwafB0yJZvSbsX-ekOZAtwhpikhfIGMsdY-JTqkf1xToLAPS3SbkMFLYwwCj3yBt-9CWiiUoh0ghRng9JYcdDAnP3vWEPP2-_XtzVz08_rm_uX6ovJY2V1ahMaZthV2p2qKxzLYAzOiVYJ0A7JTnKG3nudSopBedUV5I3jWKr9pWyRNy9Za7m1ZbbD2OOcLgdrHfQnx1AXr3_WbsN24d9q6RjNWMl4CL94AYyg5Sdts-eRzKbBim5EQtmtrUUptiXb5ZfQwpRew-23DmZj5u5uNmPm7mUx6cf_3cp_0DiPwPyo2PYw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zhang, R</creator><creator>Draycott, S</creator><creator>Gyongy, I</creator><creator>Ingram, D M</creator><creator>Underwood, I</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3931-7972</orcidid><orcidid>https://orcid.org/0000-0002-7934-2892</orcidid><orcidid>https://orcid.org/0000-0002-8669-8942</orcidid><orcidid>https://orcid.org/0000-0002-7372-980X</orcidid></search><sort><creationdate>20210301</creationdate><title>A novel contactless technique to measure water waves using a single photon avalanche diode detector array</title><author>Zhang, R ; Draycott, S ; Gyongy, I ; Ingram, D M ; Underwood, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-94e777dd29b469e7909daa075b20f2aef4c1e39fc135e43c2f74c231f841bdd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, R</creatorcontrib><creatorcontrib>Draycott, S</creatorcontrib><creatorcontrib>Gyongy, I</creatorcontrib><creatorcontrib>Ingram, D M</creatorcontrib><creatorcontrib>Underwood, I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, R</au><au>Draycott, S</au><au>Gyongy, I</au><au>Ingram, D M</au><au>Underwood, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel contactless technique to measure water waves using a single photon avalanche diode detector array</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>477</volume><issue>2247</issue><spage>20200457</spage><epage>20200457</epage><pages>20200457-20200457</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Commonly deployed measurement systems for water waves are intrusive and measure a limited number of parameters. This results in difficulties in inferring detailed sea state information while additionally subjecting the system to environmental loading. Optical techniques offer a non-intrusive alternative, yet documented systems suffer a range of problems related to usability and performance. Here, we present experimental data obtained from a 256 × 256 Single Photon Avalanche Diode (SPAD) detector array used to measure water waves in a laboratory facility. 12 regular wave conditions are used to assess performance. Picosecond resolution time-of-flight measurements are obtained, without the use of dye, over an area of the water surface and processed to provide surface elevation data. The SPAD detector array is installed 0.487 m above the water surface and synchronized with a pulsed laser source with a wavelength of 532 nm and mean power &lt;1 mW. Through analysis of the experimental results, and with the aid of an optical model, we demonstrate good performance up to a limiting steepness value, , of 0.11. Through this preliminary proof-of-concept study, we highlight the capability for SPAD-based systems to measure water waves within a given field-of-view simultaneously, while raising potential solutions for improving performance.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>35153546</pmid><doi>10.1098/rspa.2020.0457</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3931-7972</orcidid><orcidid>https://orcid.org/0000-0002-7934-2892</orcidid><orcidid>https://orcid.org/0000-0002-8669-8942</orcidid><orcidid>https://orcid.org/0000-0002-7372-980X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2021-03, Vol.477 (2247), p.20200457-20200457
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8300601
source Alma/SFX Local Collection
title A novel contactless technique to measure water waves using a single photon avalanche diode detector array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20contactless%20technique%20to%20measure%20water%20waves%20using%20a%20single%20photon%20avalanche%20diode%20detector%20array&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Zhang,%20R&rft.date=2021-03-01&rft.volume=477&rft.issue=2247&rft.spage=20200457&rft.epage=20200457&rft.pages=20200457-20200457&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0457&rft_dat=%3Cproquest_pubme%3E2628676357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628676357&rft_id=info:pmid/35153546&rfr_iscdi=true