Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers
Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2020-12, Vol.16 (12), p.1351-1360 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1360 |
---|---|
container_issue | 12 |
container_start_page | 1351 |
container_title | Nature chemical biology |
container_volume | 16 |
creator | Soula, Mariluz Weber, Ross A. Zilka, Omkar Alwaseem, Hanan La, Konnor Yen, Frederick Molina, Henrik Garcia-Bermudez, Javier Pratt, Derek A. Birsoy, Kıvanç |
description | Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR. |
doi_str_mv | 10.1038/s41589-020-0613-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8299533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471569462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</originalsourceid><addsrcrecordid>eNp1UU1LwzAYDqK4Of0BXqTguZrvphdBhl8w8aCeQ5qmM6NLZpIO9u_t6Jx68PLmhefrJQ8A5wheIUjEdaSIiTKHGOaQI5JvDsAYMYZzSnl5uN8ZHIGTGBcQEs6ROAYjgotCCErG4PXZJFX51uqsNsmEpXXKpZj5JtPKaRMybdo2i8ZFm-zapk2W_BbyzmrVZo0Jwa-SjzZm1tVdr4in4KhRbTRnu3cC3u_v3qaP-ezl4Wl6O8s1IzzlRDRNhSmGWOGGEsUY5QWvTFUpiJiBjTAYUyqqsqQ15xBSJhhnmhV13Q9MJuBm8F111dLU2rgUVCtXwS5V2EivrPyLOPsh534tBS5LRkhvcLkzCP6zMzHJhe-C62-WmBaI8ZLybQwaWDr4GINp9gkIym0PcuhB9j3IbQ9y02sufp-2V3x_fE_AAyH2kJub8BP9v-sXjaOVew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471569462</pqid></control><display><type>article</type><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</creator><creatorcontrib>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</creatorcontrib><description>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-0613-y</identifier><identifier>PMID: 32778843</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/67 ; 631/80/82 ; 631/92/287/1192 ; 631/92/320 ; Antineoplastic Agents - pharmacology ; Antioxidants ; Antioxidants - pharmacology ; Autoxidation ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biopterins - analogs & derivatives ; Biopterins - pharmacology ; Biosynthesis ; Cancer ; Carbolines - pharmacology ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cystine ; Cystine - antagonists & inhibitors ; Cystine - metabolism ; Dihydrofolate reductase ; Dose-Response Relationship, Drug ; Ferroptosis ; Ferroptosis - drug effects ; Ferroptosis - genetics ; Folic Acid Antagonists - pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes ; Genetic screening ; Glutathione ; Glutathione peroxidase ; Humans ; Inhibition ; Jurkat Cells ; Lipid membranes ; Lipid metabolism ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Metabolic pathways ; Metabolism ; Methotrexate ; Methotrexate - pharmacology ; Oxidative Stress ; Peroxidase ; Peroxidation ; Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists & inhibitors ; Phospholipid Hydroperoxide Glutathione Peroxidase - genetics ; Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism ; Piperazines - pharmacology ; Reactive Oxygen Species - metabolism ; Reductases ; Regeneration ; Signal Transduction ; Tetrahydrobiopterin ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - metabolism ; Trapping ; Vitamin E ; Vitamin E - pharmacology</subject><ispartof>Nature chemical biology, 2020-12, Vol.16 (12), p.1351-1360</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</citedby><cites>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</cites><orcidid>0000-0002-4946-1436 ; 0000-0002-7305-745X ; 0000-0003-3534-0470 ; 0000-0001-7300-9370 ; 0000-0002-7579-9895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-020-0613-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-020-0613-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32778843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soula, Mariluz</creatorcontrib><creatorcontrib>Weber, Ross A.</creatorcontrib><creatorcontrib>Zilka, Omkar</creatorcontrib><creatorcontrib>Alwaseem, Hanan</creatorcontrib><creatorcontrib>La, Konnor</creatorcontrib><creatorcontrib>Yen, Frederick</creatorcontrib><creatorcontrib>Molina, Henrik</creatorcontrib><creatorcontrib>Garcia-Bermudez, Javier</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Birsoy, Kıvanç</creatorcontrib><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</description><subject>631/67</subject><subject>631/80/82</subject><subject>631/92/287/1192</subject><subject>631/92/320</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Autoxidation</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biopterins - analogs & derivatives</subject><subject>Biopterins - pharmacology</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Carbolines - pharmacology</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cystine</subject><subject>Cystine - antagonists & inhibitors</subject><subject>Cystine - metabolism</subject><subject>Dihydrofolate reductase</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ferroptosis</subject><subject>Ferroptosis - drug effects</subject><subject>Ferroptosis - genetics</subject><subject>Folic Acid Antagonists - pharmacology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Jurkat Cells</subject><subject>Lipid membranes</subject><subject>Lipid metabolism</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Methotrexate</subject><subject>Methotrexate - pharmacology</subject><subject>Oxidative Stress</subject><subject>Peroxidase</subject><subject>Peroxidation</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists & inhibitors</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</subject><subject>Piperazines - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reductases</subject><subject>Regeneration</subject><subject>Signal Transduction</subject><subject>Tetrahydrobiopterin</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Trapping</subject><subject>Vitamin E</subject><subject>Vitamin E - pharmacology</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UU1LwzAYDqK4Of0BXqTguZrvphdBhl8w8aCeQ5qmM6NLZpIO9u_t6Jx68PLmhefrJQ8A5wheIUjEdaSIiTKHGOaQI5JvDsAYMYZzSnl5uN8ZHIGTGBcQEs6ROAYjgotCCErG4PXZJFX51uqsNsmEpXXKpZj5JtPKaRMybdo2i8ZFm-zapk2W_BbyzmrVZo0Jwa-SjzZm1tVdr4in4KhRbTRnu3cC3u_v3qaP-ezl4Wl6O8s1IzzlRDRNhSmGWOGGEsUY5QWvTFUpiJiBjTAYUyqqsqQ15xBSJhhnmhV13Q9MJuBm8F111dLU2rgUVCtXwS5V2EivrPyLOPsh534tBS5LRkhvcLkzCP6zMzHJhe-C62-WmBaI8ZLybQwaWDr4GINp9gkIym0PcuhB9j3IbQ9y02sufp-2V3x_fE_AAyH2kJub8BP9v-sXjaOVew</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Soula, Mariluz</creator><creator>Weber, Ross A.</creator><creator>Zilka, Omkar</creator><creator>Alwaseem, Hanan</creator><creator>La, Konnor</creator><creator>Yen, Frederick</creator><creator>Molina, Henrik</creator><creator>Garcia-Bermudez, Javier</creator><creator>Pratt, Derek A.</creator><creator>Birsoy, Kıvanç</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4946-1436</orcidid><orcidid>https://orcid.org/0000-0002-7305-745X</orcidid><orcidid>https://orcid.org/0000-0003-3534-0470</orcidid><orcidid>https://orcid.org/0000-0001-7300-9370</orcidid><orcidid>https://orcid.org/0000-0002-7579-9895</orcidid></search><sort><creationdate>20201201</creationdate><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><author>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67</topic><topic>631/80/82</topic><topic>631/92/287/1192</topic><topic>631/92/320</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Autoxidation</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biopterins - analogs & derivatives</topic><topic>Biopterins - pharmacology</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Carbolines - pharmacology</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cystine</topic><topic>Cystine - antagonists & inhibitors</topic><topic>Cystine - metabolism</topic><topic>Dihydrofolate reductase</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ferroptosis</topic><topic>Ferroptosis - drug effects</topic><topic>Ferroptosis - genetics</topic><topic>Folic Acid Antagonists - pharmacology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Jurkat Cells</topic><topic>Lipid membranes</topic><topic>Lipid metabolism</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Methotrexate</topic><topic>Methotrexate - pharmacology</topic><topic>Oxidative Stress</topic><topic>Peroxidase</topic><topic>Peroxidation</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists & inhibitors</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</topic><topic>Piperazines - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reductases</topic><topic>Regeneration</topic><topic>Signal Transduction</topic><topic>Tetrahydrobiopterin</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Trapping</topic><topic>Vitamin E</topic><topic>Vitamin E - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soula, Mariluz</creatorcontrib><creatorcontrib>Weber, Ross A.</creatorcontrib><creatorcontrib>Zilka, Omkar</creatorcontrib><creatorcontrib>Alwaseem, Hanan</creatorcontrib><creatorcontrib>La, Konnor</creatorcontrib><creatorcontrib>Yen, Frederick</creatorcontrib><creatorcontrib>Molina, Henrik</creatorcontrib><creatorcontrib>Garcia-Bermudez, Javier</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Birsoy, Kıvanç</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soula, Mariluz</au><au>Weber, Ross A.</au><au>Zilka, Omkar</au><au>Alwaseem, Hanan</au><au>La, Konnor</au><au>Yen, Frederick</au><au>Molina, Henrik</au><au>Garcia-Bermudez, Javier</au><au>Pratt, Derek A.</au><au>Birsoy, Kıvanç</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>1351</spage><epage>1360</epage><pages>1351-1360</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.
Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32778843</pmid><doi>10.1038/s41589-020-0613-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4946-1436</orcidid><orcidid>https://orcid.org/0000-0002-7305-745X</orcidid><orcidid>https://orcid.org/0000-0003-3534-0470</orcidid><orcidid>https://orcid.org/0000-0001-7300-9370</orcidid><orcidid>https://orcid.org/0000-0002-7579-9895</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2020-12, Vol.16 (12), p.1351-1360 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8299533 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/67 631/80/82 631/92/287/1192 631/92/320 Antineoplastic Agents - pharmacology Antioxidants Antioxidants - pharmacology Autoxidation Biochemical Engineering Biochemistry Bioorganic Chemistry Biopterins - analogs & derivatives Biopterins - pharmacology Biosynthesis Cancer Carbolines - pharmacology Cell Biology Cell Line, Tumor Cell Proliferation - drug effects Chemistry Chemistry and Materials Science Chemistry/Food Science Cystine Cystine - antagonists & inhibitors Cystine - metabolism Dihydrofolate reductase Dose-Response Relationship, Drug Ferroptosis Ferroptosis - drug effects Ferroptosis - genetics Folic Acid Antagonists - pharmacology Gene Expression Profiling Gene Expression Regulation, Neoplastic Genes Genetic screening Glutathione Glutathione peroxidase Humans Inhibition Jurkat Cells Lipid membranes Lipid metabolism Lipid peroxidation Lipid Peroxidation - drug effects Lipids Metabolic pathways Metabolism Methotrexate Methotrexate - pharmacology Oxidative Stress Peroxidase Peroxidation Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists & inhibitors Phospholipid Hydroperoxide Glutathione Peroxidase - genetics Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism Piperazines - pharmacology Reactive Oxygen Species - metabolism Reductases Regeneration Signal Transduction Tetrahydrobiopterin Tetrahydrofolate Dehydrogenase - genetics Tetrahydrofolate Dehydrogenase - metabolism Trapping Vitamin E Vitamin E - pharmacology |
title | Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20determinants%20of%20cancer%20cell%20sensitivity%20to%20canonical%20ferroptosis%20inducers&rft.jtitle=Nature%20chemical%20biology&rft.au=Soula,%20Mariluz&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=1351&rft.epage=1360&rft.pages=1351-1360&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-0613-y&rft_dat=%3Cproquest_pubme%3E2471569462%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471569462&rft_id=info:pmid/32778843&rfr_iscdi=true |