Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers

Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2020-12, Vol.16 (12), p.1351-1360
Hauptverfasser: Soula, Mariluz, Weber, Ross A., Zilka, Omkar, Alwaseem, Hanan, La, Konnor, Yen, Frederick, Molina, Henrik, Garcia-Bermudez, Javier, Pratt, Derek A., Birsoy, Kıvanç
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1360
container_issue 12
container_start_page 1351
container_title Nature chemical biology
container_volume 16
creator Soula, Mariluz
Weber, Ross A.
Zilka, Omkar
Alwaseem, Hanan
La, Konnor
Yen, Frederick
Molina, Henrik
Garcia-Bermudez, Javier
Pratt, Derek A.
Birsoy, Kıvanç
description Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation. Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.
doi_str_mv 10.1038/s41589-020-0613-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8299533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471569462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</originalsourceid><addsrcrecordid>eNp1UU1LwzAYDqK4Of0BXqTguZrvphdBhl8w8aCeQ5qmM6NLZpIO9u_t6Jx68PLmhefrJQ8A5wheIUjEdaSIiTKHGOaQI5JvDsAYMYZzSnl5uN8ZHIGTGBcQEs6ROAYjgotCCErG4PXZJFX51uqsNsmEpXXKpZj5JtPKaRMybdo2i8ZFm-zapk2W_BbyzmrVZo0Jwa-SjzZm1tVdr4in4KhRbTRnu3cC3u_v3qaP-ezl4Wl6O8s1IzzlRDRNhSmGWOGGEsUY5QWvTFUpiJiBjTAYUyqqsqQ15xBSJhhnmhV13Q9MJuBm8F111dLU2rgUVCtXwS5V2EivrPyLOPsh534tBS5LRkhvcLkzCP6zMzHJhe-C62-WmBaI8ZLybQwaWDr4GINp9gkIym0PcuhB9j3IbQ9y02sufp-2V3x_fE_AAyH2kJub8BP9v-sXjaOVew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471569462</pqid></control><display><type>article</type><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</creator><creatorcontrib>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</creatorcontrib><description>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation. Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-0613-y</identifier><identifier>PMID: 32778843</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/67 ; 631/80/82 ; 631/92/287/1192 ; 631/92/320 ; Antineoplastic Agents - pharmacology ; Antioxidants ; Antioxidants - pharmacology ; Autoxidation ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biopterins - analogs &amp; derivatives ; Biopterins - pharmacology ; Biosynthesis ; Cancer ; Carbolines - pharmacology ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cystine ; Cystine - antagonists &amp; inhibitors ; Cystine - metabolism ; Dihydrofolate reductase ; Dose-Response Relationship, Drug ; Ferroptosis ; Ferroptosis - drug effects ; Ferroptosis - genetics ; Folic Acid Antagonists - pharmacology ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes ; Genetic screening ; Glutathione ; Glutathione peroxidase ; Humans ; Inhibition ; Jurkat Cells ; Lipid membranes ; Lipid metabolism ; Lipid peroxidation ; Lipid Peroxidation - drug effects ; Lipids ; Metabolic pathways ; Metabolism ; Methotrexate ; Methotrexate - pharmacology ; Oxidative Stress ; Peroxidase ; Peroxidation ; Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists &amp; inhibitors ; Phospholipid Hydroperoxide Glutathione Peroxidase - genetics ; Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism ; Piperazines - pharmacology ; Reactive Oxygen Species - metabolism ; Reductases ; Regeneration ; Signal Transduction ; Tetrahydrobiopterin ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - metabolism ; Trapping ; Vitamin E ; Vitamin E - pharmacology</subject><ispartof>Nature chemical biology, 2020-12, Vol.16 (12), p.1351-1360</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</citedby><cites>FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</cites><orcidid>0000-0002-4946-1436 ; 0000-0002-7305-745X ; 0000-0003-3534-0470 ; 0000-0001-7300-9370 ; 0000-0002-7579-9895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-020-0613-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-020-0613-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32778843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soula, Mariluz</creatorcontrib><creatorcontrib>Weber, Ross A.</creatorcontrib><creatorcontrib>Zilka, Omkar</creatorcontrib><creatorcontrib>Alwaseem, Hanan</creatorcontrib><creatorcontrib>La, Konnor</creatorcontrib><creatorcontrib>Yen, Frederick</creatorcontrib><creatorcontrib>Molina, Henrik</creatorcontrib><creatorcontrib>Garcia-Bermudez, Javier</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Birsoy, Kıvanç</creatorcontrib><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation. Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</description><subject>631/67</subject><subject>631/80/82</subject><subject>631/92/287/1192</subject><subject>631/92/320</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Autoxidation</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biopterins - analogs &amp; derivatives</subject><subject>Biopterins - pharmacology</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Carbolines - pharmacology</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cystine</subject><subject>Cystine - antagonists &amp; inhibitors</subject><subject>Cystine - metabolism</subject><subject>Dihydrofolate reductase</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ferroptosis</subject><subject>Ferroptosis - drug effects</subject><subject>Ferroptosis - genetics</subject><subject>Folic Acid Antagonists - pharmacology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Jurkat Cells</subject><subject>Lipid membranes</subject><subject>Lipid metabolism</subject><subject>Lipid peroxidation</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipids</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Methotrexate</subject><subject>Methotrexate - pharmacology</subject><subject>Oxidative Stress</subject><subject>Peroxidase</subject><subject>Peroxidation</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists &amp; inhibitors</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</subject><subject>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</subject><subject>Piperazines - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reductases</subject><subject>Regeneration</subject><subject>Signal Transduction</subject><subject>Tetrahydrobiopterin</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Trapping</subject><subject>Vitamin E</subject><subject>Vitamin E - pharmacology</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UU1LwzAYDqK4Of0BXqTguZrvphdBhl8w8aCeQ5qmM6NLZpIO9u_t6Jx68PLmhefrJQ8A5wheIUjEdaSIiTKHGOaQI5JvDsAYMYZzSnl5uN8ZHIGTGBcQEs6ROAYjgotCCErG4PXZJFX51uqsNsmEpXXKpZj5JtPKaRMybdo2i8ZFm-zapk2W_BbyzmrVZo0Jwa-SjzZm1tVdr4in4KhRbTRnu3cC3u_v3qaP-ezl4Wl6O8s1IzzlRDRNhSmGWOGGEsUY5QWvTFUpiJiBjTAYUyqqsqQ15xBSJhhnmhV13Q9MJuBm8F111dLU2rgUVCtXwS5V2EivrPyLOPsh534tBS5LRkhvcLkzCP6zMzHJhe-C62-WmBaI8ZLybQwaWDr4GINp9gkIym0PcuhB9j3IbQ9y02sufp-2V3x_fE_AAyH2kJub8BP9v-sXjaOVew</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Soula, Mariluz</creator><creator>Weber, Ross A.</creator><creator>Zilka, Omkar</creator><creator>Alwaseem, Hanan</creator><creator>La, Konnor</creator><creator>Yen, Frederick</creator><creator>Molina, Henrik</creator><creator>Garcia-Bermudez, Javier</creator><creator>Pratt, Derek A.</creator><creator>Birsoy, Kıvanç</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4946-1436</orcidid><orcidid>https://orcid.org/0000-0002-7305-745X</orcidid><orcidid>https://orcid.org/0000-0003-3534-0470</orcidid><orcidid>https://orcid.org/0000-0001-7300-9370</orcidid><orcidid>https://orcid.org/0000-0002-7579-9895</orcidid></search><sort><creationdate>20201201</creationdate><title>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</title><author>Soula, Mariluz ; Weber, Ross A. ; Zilka, Omkar ; Alwaseem, Hanan ; La, Konnor ; Yen, Frederick ; Molina, Henrik ; Garcia-Bermudez, Javier ; Pratt, Derek A. ; Birsoy, Kıvanç</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-38ffb24202a2f43a554676bebba015e0f8e22448b994d6600458565c57ddc5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67</topic><topic>631/80/82</topic><topic>631/92/287/1192</topic><topic>631/92/320</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Autoxidation</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biopterins - analogs &amp; derivatives</topic><topic>Biopterins - pharmacology</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Carbolines - pharmacology</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cystine</topic><topic>Cystine - antagonists &amp; inhibitors</topic><topic>Cystine - metabolism</topic><topic>Dihydrofolate reductase</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ferroptosis</topic><topic>Ferroptosis - drug effects</topic><topic>Ferroptosis - genetics</topic><topic>Folic Acid Antagonists - pharmacology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Jurkat Cells</topic><topic>Lipid membranes</topic><topic>Lipid metabolism</topic><topic>Lipid peroxidation</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipids</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Methotrexate</topic><topic>Methotrexate - pharmacology</topic><topic>Oxidative Stress</topic><topic>Peroxidase</topic><topic>Peroxidation</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists &amp; inhibitors</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - genetics</topic><topic>Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism</topic><topic>Piperazines - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reductases</topic><topic>Regeneration</topic><topic>Signal Transduction</topic><topic>Tetrahydrobiopterin</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Trapping</topic><topic>Vitamin E</topic><topic>Vitamin E - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soula, Mariluz</creatorcontrib><creatorcontrib>Weber, Ross A.</creatorcontrib><creatorcontrib>Zilka, Omkar</creatorcontrib><creatorcontrib>Alwaseem, Hanan</creatorcontrib><creatorcontrib>La, Konnor</creatorcontrib><creatorcontrib>Yen, Frederick</creatorcontrib><creatorcontrib>Molina, Henrik</creatorcontrib><creatorcontrib>Garcia-Bermudez, Javier</creatorcontrib><creatorcontrib>Pratt, Derek A.</creatorcontrib><creatorcontrib>Birsoy, Kıvanç</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soula, Mariluz</au><au>Weber, Ross A.</au><au>Zilka, Omkar</au><au>Alwaseem, Hanan</au><au>La, Konnor</au><au>Yen, Frederick</au><au>Molina, Henrik</au><au>Garcia-Bermudez, Javier</au><au>Pratt, Derek A.</au><au>Birsoy, Kıvanç</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>16</volume><issue>12</issue><spage>1351</spage><epage>1360</epage><pages>1351-1360</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation. Genetic screens reveal a compendium of metabolic modifiers of lipid peroxidation. Tetrahydrobiopterin is essential under GPX4 inhibition, acting as a radical-trapping antioxidant that inhibits lipid peroxidation and is regenerated by DHFR.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32778843</pmid><doi>10.1038/s41589-020-0613-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4946-1436</orcidid><orcidid>https://orcid.org/0000-0002-7305-745X</orcidid><orcidid>https://orcid.org/0000-0003-3534-0470</orcidid><orcidid>https://orcid.org/0000-0001-7300-9370</orcidid><orcidid>https://orcid.org/0000-0002-7579-9895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2020-12, Vol.16 (12), p.1351-1360
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8299533
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/67
631/80/82
631/92/287/1192
631/92/320
Antineoplastic Agents - pharmacology
Antioxidants
Antioxidants - pharmacology
Autoxidation
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Biopterins - analogs & derivatives
Biopterins - pharmacology
Biosynthesis
Cancer
Carbolines - pharmacology
Cell Biology
Cell Line, Tumor
Cell Proliferation - drug effects
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cystine
Cystine - antagonists & inhibitors
Cystine - metabolism
Dihydrofolate reductase
Dose-Response Relationship, Drug
Ferroptosis
Ferroptosis - drug effects
Ferroptosis - genetics
Folic Acid Antagonists - pharmacology
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genes
Genetic screening
Glutathione
Glutathione peroxidase
Humans
Inhibition
Jurkat Cells
Lipid membranes
Lipid metabolism
Lipid peroxidation
Lipid Peroxidation - drug effects
Lipids
Metabolic pathways
Metabolism
Methotrexate
Methotrexate - pharmacology
Oxidative Stress
Peroxidase
Peroxidation
Phospholipid Hydroperoxide Glutathione Peroxidase - antagonists & inhibitors
Phospholipid Hydroperoxide Glutathione Peroxidase - genetics
Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism
Piperazines - pharmacology
Reactive Oxygen Species - metabolism
Reductases
Regeneration
Signal Transduction
Tetrahydrobiopterin
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - metabolism
Trapping
Vitamin E
Vitamin E - pharmacology
title Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20determinants%20of%20cancer%20cell%20sensitivity%20to%20canonical%20ferroptosis%20inducers&rft.jtitle=Nature%20chemical%20biology&rft.au=Soula,%20Mariluz&rft.date=2020-12-01&rft.volume=16&rft.issue=12&rft.spage=1351&rft.epage=1360&rft.pages=1351-1360&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-0613-y&rft_dat=%3Cproquest_pubme%3E2471569462%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471569462&rft_id=info:pmid/32778843&rfr_iscdi=true