XRCC1 prevents toxic PARP1 trapping during DNA base excision repair

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-07, Vol.81 (14), p.3018-3030.e5
Hauptverfasser: Demin, Annie A., Hirota, Kouji, Tsuda, Masataka, Adamowicz, Marek, Hailstone, Richard, Brazina, Jan, Gittens, William, Kalasova, Ilona, Shao, Zhengping, Zha, Shan, Sasanuma, Hiroyuki, Hanzlikova, Hana, Takeda, Shunichi, Caldecott, Keith W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3030.e5
container_issue 14
container_start_page 3018
container_title Molecular cell
container_volume 81
creator Demin, Annie A.
Hirota, Kouji
Tsuda, Masataka
Adamowicz, Marek
Hailstone, Richard
Brazina, Jan
Gittens, William
Kalasova, Ilona
Shao, Zhengping
Zha, Shan
Sasanuma, Hiroyuki
Hanzlikova, Hana
Takeda, Shunichi
Caldecott, Keith W.
description Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity. [Display omitted] •XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.
doi_str_mv 10.1016/j.molcel.2021.05.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8294329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652100366X</els_id><sourcerecordid>2539523012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoWhw9J2-wdD4WMvcSnJkuPLgMD9BIquKDZgN0GWqVSBY3mSE6T_vgqSdetl4IEEyPcl-RDylUJOgcqLZb7yncEuZ8BoDiIHqD6QYwpVOS2oLI4ONSulmJCTGJcAtBCz6hOZ8IImEchjUv96qmuaDQE32I8xG_3Wmexx_vRIszHoYXD9ImvXYZcuH-ZZoyNmuDUuOt9nAQftwmfy0eou4pdDPiU_r69-1LfT--83d_X8fmpEyccpZw0YQChb3ZgUlaQlmLa0zKCV0hpOW6iEbrgWaC02khpeWom2mXFLLT8l3_a-w7pZYWvSwUF3aghupcOL8tqp953ePauF36gZqwrOqmRwfjAI_vca46hWLiaEne7Rr6NigleCcaAsjRb7URN8jAHt2xoKasdfLdWev9rxVyBU4p9kZ_-e-Cb6A_zvD5hAbRwGFY3D3mDrAppRtd79f8MrRj6Z8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539523012</pqid></control><display><type>article</type><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</creator><creatorcontrib>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</creatorcontrib><description>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity. [Display omitted] •XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.05.009</identifier><identifier>PMID: 34102106</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; base excision repair ; Cell Line ; DNA - genetics ; DNA Breaks, Single-Stranded ; DNA Damage - drug effects ; DNA Damage - genetics ; DNA Ligase ATP - metabolism ; DNA Polymerase beta - metabolism ; DNA Repair - drug effects ; DNA Repair - genetics ; DNA-Binding Proteins - metabolism ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Humans ; PARP inhibitors ; PARP trapping ; PARP1 ; Poly (ADP-Ribose) Polymerase-1 - metabolism ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Poly(ADP-ribose) Polymerases - metabolism ; Protein Binding - drug effects ; single-strand breaks ; X-ray Repair Cross Complementing Protein 1 - metabolism ; XRCC1 protein complexes</subject><ispartof>Molecular cell, 2021-07, Vol.81 (14), p.3018-3030.e5</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</citedby><cites>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109727652100366X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34102106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demin, Annie A.</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Adamowicz, Marek</creatorcontrib><creatorcontrib>Hailstone, Richard</creatorcontrib><creatorcontrib>Brazina, Jan</creatorcontrib><creatorcontrib>Gittens, William</creatorcontrib><creatorcontrib>Kalasova, Ilona</creatorcontrib><creatorcontrib>Shao, Zhengping</creatorcontrib><creatorcontrib>Zha, Shan</creatorcontrib><creatorcontrib>Sasanuma, Hiroyuki</creatorcontrib><creatorcontrib>Hanzlikova, Hana</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Caldecott, Keith W.</creatorcontrib><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity. [Display omitted] •XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</description><subject>Animals</subject><subject>base excision repair</subject><subject>Cell Line</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Single-Stranded</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - genetics</subject><subject>DNA Ligase ATP - metabolism</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>PARP inhibitors</subject><subject>PARP trapping</subject><subject>PARP1</subject><subject>Poly (ADP-Ribose) Polymerase-1 - metabolism</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Protein Binding - drug effects</subject><subject>single-strand breaks</subject><subject>X-ray Repair Cross Complementing Protein 1 - metabolism</subject><subject>XRCC1 protein complexes</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v2zAMhoWhw9J2-wdD4WMvcSnJkuPLgMD9BIquKDZgN0GWqVSBY3mSE6T_vgqSdetl4IEEyPcl-RDylUJOgcqLZb7yncEuZ8BoDiIHqD6QYwpVOS2oLI4ONSulmJCTGJcAtBCz6hOZ8IImEchjUv96qmuaDQE32I8xG_3Wmexx_vRIszHoYXD9ImvXYZcuH-ZZoyNmuDUuOt9nAQftwmfy0eou4pdDPiU_r69-1LfT--83d_X8fmpEyccpZw0YQChb3ZgUlaQlmLa0zKCV0hpOW6iEbrgWaC02khpeWom2mXFLLT8l3_a-w7pZYWvSwUF3aghupcOL8tqp953ePauF36gZqwrOqmRwfjAI_vca46hWLiaEne7Rr6NigleCcaAsjRb7URN8jAHt2xoKasdfLdWev9rxVyBU4p9kZ_-e-Cb6A_zvD5hAbRwGFY3D3mDrAppRtd79f8MrRj6Z8Q</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Demin, Annie A.</creator><creator>Hirota, Kouji</creator><creator>Tsuda, Masataka</creator><creator>Adamowicz, Marek</creator><creator>Hailstone, Richard</creator><creator>Brazina, Jan</creator><creator>Gittens, William</creator><creator>Kalasova, Ilona</creator><creator>Shao, Zhengping</creator><creator>Zha, Shan</creator><creator>Sasanuma, Hiroyuki</creator><creator>Hanzlikova, Hana</creator><creator>Takeda, Shunichi</creator><creator>Caldecott, Keith W.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210715</creationdate><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><author>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>base excision repair</topic><topic>Cell Line</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Single-Stranded</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - genetics</topic><topic>DNA Ligase ATP - metabolism</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>PARP inhibitors</topic><topic>PARP trapping</topic><topic>PARP1</topic><topic>Poly (ADP-Ribose) Polymerase-1 - metabolism</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Protein Binding - drug effects</topic><topic>single-strand breaks</topic><topic>X-ray Repair Cross Complementing Protein 1 - metabolism</topic><topic>XRCC1 protein complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demin, Annie A.</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Adamowicz, Marek</creatorcontrib><creatorcontrib>Hailstone, Richard</creatorcontrib><creatorcontrib>Brazina, Jan</creatorcontrib><creatorcontrib>Gittens, William</creatorcontrib><creatorcontrib>Kalasova, Ilona</creatorcontrib><creatorcontrib>Shao, Zhengping</creatorcontrib><creatorcontrib>Zha, Shan</creatorcontrib><creatorcontrib>Sasanuma, Hiroyuki</creatorcontrib><creatorcontrib>Hanzlikova, Hana</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Caldecott, Keith W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demin, Annie A.</au><au>Hirota, Kouji</au><au>Tsuda, Masataka</au><au>Adamowicz, Marek</au><au>Hailstone, Richard</au><au>Brazina, Jan</au><au>Gittens, William</au><au>Kalasova, Ilona</au><au>Shao, Zhengping</au><au>Zha, Shan</au><au>Sasanuma, Hiroyuki</au><au>Hanzlikova, Hana</au><au>Takeda, Shunichi</au><au>Caldecott, Keith W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>81</volume><issue>14</issue><spage>3018</spage><epage>3030.e5</epage><pages>3018-3030.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity. [Display omitted] •XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34102106</pmid><doi>10.1016/j.molcel.2021.05.009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-07, Vol.81 (14), p.3018-3030.e5
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8294329
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
base excision repair
Cell Line
DNA - genetics
DNA Breaks, Single-Stranded
DNA Damage - drug effects
DNA Damage - genetics
DNA Ligase ATP - metabolism
DNA Polymerase beta - metabolism
DNA Repair - drug effects
DNA Repair - genetics
DNA-Binding Proteins - metabolism
Fibroblasts - drug effects
Fibroblasts - metabolism
Humans
PARP inhibitors
PARP trapping
PARP1
Poly (ADP-Ribose) Polymerase-1 - metabolism
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Poly(ADP-ribose) Polymerases - metabolism
Protein Binding - drug effects
single-strand breaks
X-ray Repair Cross Complementing Protein 1 - metabolism
XRCC1 protein complexes
title XRCC1 prevents toxic PARP1 trapping during DNA base excision repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC1%20prevents%20toxic%20PARP1%20trapping%20during%20DNA%20base%20excision%20repair&rft.jtitle=Molecular%20cell&rft.au=Demin,%20Annie%20A.&rft.date=2021-07-15&rft.volume=81&rft.issue=14&rft.spage=3018&rft.epage=3030.e5&rft.pages=3018-3030.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.05.009&rft_dat=%3Cproquest_pubme%3E2539523012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539523012&rft_id=info:pmid/34102106&rft_els_id=S109727652100366X&rfr_iscdi=true