XRCC1 prevents toxic PARP1 trapping during DNA base excision repair
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA p...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-07, Vol.81 (14), p.3018-3030.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3030.e5 |
---|---|
container_issue | 14 |
container_start_page | 3018 |
container_title | Molecular cell |
container_volume | 81 |
creator | Demin, Annie A. Hirota, Kouji Tsuda, Masataka Adamowicz, Marek Hailstone, Richard Brazina, Jan Gittens, William Kalasova, Ilona Shao, Zhengping Zha, Shan Sasanuma, Hiroyuki Hanzlikova, Hana Takeda, Shunichi Caldecott, Keith W. |
description | Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity.
[Display omitted]
•XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair
Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage. |
doi_str_mv | 10.1016/j.molcel.2021.05.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8294329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727652100366X</els_id><sourcerecordid>2539523012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoWhw9J2-wdD4WMvcSnJkuPLgMD9BIquKDZgN0GWqVSBY3mSE6T_vgqSdetl4IEEyPcl-RDylUJOgcqLZb7yncEuZ8BoDiIHqD6QYwpVOS2oLI4ONSulmJCTGJcAtBCz6hOZ8IImEchjUv96qmuaDQE32I8xG_3Wmexx_vRIszHoYXD9ImvXYZcuH-ZZoyNmuDUuOt9nAQftwmfy0eou4pdDPiU_r69-1LfT--83d_X8fmpEyccpZw0YQChb3ZgUlaQlmLa0zKCV0hpOW6iEbrgWaC02khpeWom2mXFLLT8l3_a-w7pZYWvSwUF3aghupcOL8tqp953ePauF36gZqwrOqmRwfjAI_vca46hWLiaEne7Rr6NigleCcaAsjRb7URN8jAHt2xoKasdfLdWev9rxVyBU4p9kZ_-e-Cb6A_zvD5hAbRwGFY3D3mDrAppRtd79f8MrRj6Z8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539523012</pqid></control><display><type>article</type><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</creator><creatorcontrib>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</creatorcontrib><description>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity.
[Display omitted]
•XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair
Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.05.009</identifier><identifier>PMID: 34102106</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; base excision repair ; Cell Line ; DNA - genetics ; DNA Breaks, Single-Stranded ; DNA Damage - drug effects ; DNA Damage - genetics ; DNA Ligase ATP - metabolism ; DNA Polymerase beta - metabolism ; DNA Repair - drug effects ; DNA Repair - genetics ; DNA-Binding Proteins - metabolism ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Humans ; PARP inhibitors ; PARP trapping ; PARP1 ; Poly (ADP-Ribose) Polymerase-1 - metabolism ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Poly(ADP-ribose) Polymerases - metabolism ; Protein Binding - drug effects ; single-strand breaks ; X-ray Repair Cross Complementing Protein 1 - metabolism ; XRCC1 protein complexes</subject><ispartof>Molecular cell, 2021-07, Vol.81 (14), p.3018-3030.e5</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</citedby><cites>FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S109727652100366X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34102106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demin, Annie A.</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Adamowicz, Marek</creatorcontrib><creatorcontrib>Hailstone, Richard</creatorcontrib><creatorcontrib>Brazina, Jan</creatorcontrib><creatorcontrib>Gittens, William</creatorcontrib><creatorcontrib>Kalasova, Ilona</creatorcontrib><creatorcontrib>Shao, Zhengping</creatorcontrib><creatorcontrib>Zha, Shan</creatorcontrib><creatorcontrib>Sasanuma, Hiroyuki</creatorcontrib><creatorcontrib>Hanzlikova, Hana</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Caldecott, Keith W.</creatorcontrib><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity.
[Display omitted]
•XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair
Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</description><subject>Animals</subject><subject>base excision repair</subject><subject>Cell Line</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Single-Stranded</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - genetics</subject><subject>DNA Ligase ATP - metabolism</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>PARP inhibitors</subject><subject>PARP trapping</subject><subject>PARP1</subject><subject>Poly (ADP-Ribose) Polymerase-1 - metabolism</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Protein Binding - drug effects</subject><subject>single-strand breaks</subject><subject>X-ray Repair Cross Complementing Protein 1 - metabolism</subject><subject>XRCC1 protein complexes</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v2zAMhoWhw9J2-wdD4WMvcSnJkuPLgMD9BIquKDZgN0GWqVSBY3mSE6T_vgqSdetl4IEEyPcl-RDylUJOgcqLZb7yncEuZ8BoDiIHqD6QYwpVOS2oLI4ONSulmJCTGJcAtBCz6hOZ8IImEchjUv96qmuaDQE32I8xG_3Wmexx_vRIszHoYXD9ImvXYZcuH-ZZoyNmuDUuOt9nAQftwmfy0eou4pdDPiU_r69-1LfT--83d_X8fmpEyccpZw0YQChb3ZgUlaQlmLa0zKCV0hpOW6iEbrgWaC02khpeWom2mXFLLT8l3_a-w7pZYWvSwUF3aghupcOL8tqp953ePauF36gZqwrOqmRwfjAI_vca46hWLiaEne7Rr6NigleCcaAsjRb7URN8jAHt2xoKasdfLdWev9rxVyBU4p9kZ_-e-Cb6A_zvD5hAbRwGFY3D3mDrAppRtd79f8MrRj6Z8Q</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Demin, Annie A.</creator><creator>Hirota, Kouji</creator><creator>Tsuda, Masataka</creator><creator>Adamowicz, Marek</creator><creator>Hailstone, Richard</creator><creator>Brazina, Jan</creator><creator>Gittens, William</creator><creator>Kalasova, Ilona</creator><creator>Shao, Zhengping</creator><creator>Zha, Shan</creator><creator>Sasanuma, Hiroyuki</creator><creator>Hanzlikova, Hana</creator><creator>Takeda, Shunichi</creator><creator>Caldecott, Keith W.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210715</creationdate><title>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</title><author>Demin, Annie A. ; Hirota, Kouji ; Tsuda, Masataka ; Adamowicz, Marek ; Hailstone, Richard ; Brazina, Jan ; Gittens, William ; Kalasova, Ilona ; Shao, Zhengping ; Zha, Shan ; Sasanuma, Hiroyuki ; Hanzlikova, Hana ; Takeda, Shunichi ; Caldecott, Keith W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-32b0c0e07dabcbcb96170cd7f2cef66fc31d095ab3a5effeb61c37f6efb83f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>base excision repair</topic><topic>Cell Line</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Single-Stranded</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - genetics</topic><topic>DNA Ligase ATP - metabolism</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>PARP inhibitors</topic><topic>PARP trapping</topic><topic>PARP1</topic><topic>Poly (ADP-Ribose) Polymerase-1 - metabolism</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Protein Binding - drug effects</topic><topic>single-strand breaks</topic><topic>X-ray Repair Cross Complementing Protein 1 - metabolism</topic><topic>XRCC1 protein complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demin, Annie A.</creatorcontrib><creatorcontrib>Hirota, Kouji</creatorcontrib><creatorcontrib>Tsuda, Masataka</creatorcontrib><creatorcontrib>Adamowicz, Marek</creatorcontrib><creatorcontrib>Hailstone, Richard</creatorcontrib><creatorcontrib>Brazina, Jan</creatorcontrib><creatorcontrib>Gittens, William</creatorcontrib><creatorcontrib>Kalasova, Ilona</creatorcontrib><creatorcontrib>Shao, Zhengping</creatorcontrib><creatorcontrib>Zha, Shan</creatorcontrib><creatorcontrib>Sasanuma, Hiroyuki</creatorcontrib><creatorcontrib>Hanzlikova, Hana</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>Caldecott, Keith W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demin, Annie A.</au><au>Hirota, Kouji</au><au>Tsuda, Masataka</au><au>Adamowicz, Marek</au><au>Hailstone, Richard</au><au>Brazina, Jan</au><au>Gittens, William</au><au>Kalasova, Ilona</au><au>Shao, Zhengping</au><au>Zha, Shan</au><au>Sasanuma, Hiroyuki</au><au>Hanzlikova, Hana</au><au>Takeda, Shunichi</au><au>Caldecott, Keith W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC1 prevents toxic PARP1 trapping during DNA base excision repair</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>81</volume><issue>14</issue><spage>3018</spage><epage>3030.e5</epage><pages>3018-3030.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes “trapped” on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1−/− cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an “anti-trapper” that prevents toxic PARP1 activity.
[Display omitted]
•XRCC1 prevents endogenous PARP1 trapping during DNA base excision repair•PARP1 trapping impedes base excision repair and increases sensitivity to base damage•In the absence of PARP1, XRCC1 is dispensable for DNA base excision repair
Demin et al. show that the essential role of the scaffold protein XRCC1 during DNA base excision repair is to prevent toxic “trapping” of PARP1 on SSB intermediates, which otherwise block this essential repair process and lead to increased cellular sensitivity to DNA base damage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34102106</pmid><doi>10.1016/j.molcel.2021.05.009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-07, Vol.81 (14), p.3018-3030.e5 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8294329 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals base excision repair Cell Line DNA - genetics DNA Breaks, Single-Stranded DNA Damage - drug effects DNA Damage - genetics DNA Ligase ATP - metabolism DNA Polymerase beta - metabolism DNA Repair - drug effects DNA Repair - genetics DNA-Binding Proteins - metabolism Fibroblasts - drug effects Fibroblasts - metabolism Humans PARP inhibitors PARP trapping PARP1 Poly (ADP-Ribose) Polymerase-1 - metabolism Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Poly(ADP-ribose) Polymerases - metabolism Protein Binding - drug effects single-strand breaks X-ray Repair Cross Complementing Protein 1 - metabolism XRCC1 protein complexes |
title | XRCC1 prevents toxic PARP1 trapping during DNA base excision repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC1%20prevents%20toxic%20PARP1%20trapping%20during%20DNA%20base%20excision%20repair&rft.jtitle=Molecular%20cell&rft.au=Demin,%20Annie%20A.&rft.date=2021-07-15&rft.volume=81&rft.issue=14&rft.spage=3018&rft.epage=3030.e5&rft.pages=3018-3030.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.05.009&rft_dat=%3Cproquest_pubme%3E2539523012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539523012&rft_id=info:pmid/34102106&rft_els_id=S109727652100366X&rfr_iscdi=true |