Using drug descriptions and molecular structures for drug–drug interaction extraction from literature
Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction....
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2021-07, Vol.37 (12), p.1739-1746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1746 |
---|---|
container_issue | 12 |
container_start_page | 1739 |
container_title | Bioinformatics |
container_volume | 37 |
creator | Asada, Masaki Miwa, Makoto Sasaki, Yutaka |
description | Abstract
Motivation
Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information.
Results
We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement.
Availability and implementation
Our code is available at https://github.com/tticoin/DESC_MOL-DDIE. |
doi_str_mv | 10.1093/bioinformatics/btaa907 |
format | Article |
fullrecord | <record><control><sourceid>oup_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8289381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa907</oup_id><sourcerecordid>10.1093/bioinformatics/btaa907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EoqVwBZQLhNqxk9gbJFTxJ1ViU9aWM7WLURJHtoNgxx24ISchaQtSd2xmRnrzvRk9hC4JviJY0HllnW2N842KFsK8ikoJXB6hKWEFTjOci-NhpkWZMo7pBJ2F8IpxThhjp2hCKRacETxFm-dg202y9v1QdABvu2hdGxLVrpPG1Rr6WvkkRN9D7L0OyXB0u_79-bWlbBu1VzBSiX6Pv6PxrklqO2ojd45OjKqDvtj3GVrd3a4WD-ny6f5xcbNMgQkRUwolMyw3FLimnFFdQJYTiolWRaYyAkQAFRWwoXPgOas4L4whXEGesZLO0PXOtuurRq9Bt8NDtey8bZT_kE5Zeai09kVu3JvkGReUk8Gg2BmAdyF4bf5YguWYvDxMXu6TH0CyA13f_Zf5AeuPktI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</creator><creatorcontrib>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</creatorcontrib><description>Abstract
Motivation
Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information.
Results
We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement.
Availability and implementation
Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa907</identifier><identifier>PMID: 33098410</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2021-07, Vol.37 (12), p.1739-1746</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</citedby><cites>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</cites><orcidid>0000-0002-2330-6972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289381/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289381/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Asada, Masaki</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><title>Bioinformatics</title><description>Abstract
Motivation
Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information.
Results
We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement.
Availability and implementation
Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkE1OwzAQhS0EoqVwBZQLhNqxk9gbJFTxJ1ViU9aWM7WLURJHtoNgxx24ISchaQtSd2xmRnrzvRk9hC4JviJY0HllnW2N842KFsK8ikoJXB6hKWEFTjOci-NhpkWZMo7pBJ2F8IpxThhjp2hCKRacETxFm-dg202y9v1QdABvu2hdGxLVrpPG1Rr6WvkkRN9D7L0OyXB0u_79-bWlbBu1VzBSiX6Pv6PxrklqO2ojd45OjKqDvtj3GVrd3a4WD-ny6f5xcbNMgQkRUwolMyw3FLimnFFdQJYTiolWRaYyAkQAFRWwoXPgOas4L4whXEGesZLO0PXOtuurRq9Bt8NDtey8bZT_kE5Zeai09kVu3JvkGReUk8Gg2BmAdyF4bf5YguWYvDxMXu6TH0CyA13f_Zf5AeuPktI</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Asada, Masaki</creator><creator>Miwa, Makoto</creator><creator>Sasaki, Yutaka</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2330-6972</orcidid></search><sort><creationdate>20210719</creationdate><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><author>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asada, Masaki</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asada, Masaki</au><au>Miwa, Makoto</au><au>Sasaki, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</atitle><jtitle>Bioinformatics</jtitle><date>2021-07-19</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1739</spage><epage>1746</epage><pages>1739-1746</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information.
Results
We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement.
Availability and implementation
Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</abstract><pub>Oxford University Press</pub><pmid>33098410</pmid><doi>10.1093/bioinformatics/btaa907</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2330-6972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2021-07, Vol.37 (12), p.1739-1746 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8289381 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Original Papers |
title | Using drug descriptions and molecular structures for drug–drug interaction extraction from literature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20drug%20descriptions%20and%20molecular%20structures%20for%20drug%E2%80%93drug%20interaction%20extraction%20from%20literature&rft.jtitle=Bioinformatics&rft.au=Asada,%20Masaki&rft.date=2021-07-19&rft.volume=37&rft.issue=12&rft.spage=1739&rft.epage=1746&rft.pages=1739-1746&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa907&rft_dat=%3Coup_pubme%3E10.1093/bioinformatics/btaa907%3C/oup_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33098410&rft_oup_id=10.1093/bioinformatics/btaa907&rfr_iscdi=true |