Using drug descriptions and molecular structures for drug–drug interaction extraction from literature

Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-07, Vol.37 (12), p.1739-1746
Hauptverfasser: Asada, Masaki, Miwa, Makoto, Sasaki, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1746
container_issue 12
container_start_page 1739
container_title Bioinformatics
container_volume 37
creator Asada, Masaki
Miwa, Makoto
Sasaki, Yutaka
description Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information. Results We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement. Availability and implementation Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.
doi_str_mv 10.1093/bioinformatics/btaa907
format Article
fullrecord <record><control><sourceid>oup_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8289381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa907</oup_id><sourcerecordid>10.1093/bioinformatics/btaa907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EoqVwBZQLhNqxk9gbJFTxJ1ViU9aWM7WLURJHtoNgxx24ISchaQtSd2xmRnrzvRk9hC4JviJY0HllnW2N842KFsK8ikoJXB6hKWEFTjOci-NhpkWZMo7pBJ2F8IpxThhjp2hCKRacETxFm-dg202y9v1QdABvu2hdGxLVrpPG1Rr6WvkkRN9D7L0OyXB0u_79-bWlbBu1VzBSiX6Pv6PxrklqO2ojd45OjKqDvtj3GVrd3a4WD-ny6f5xcbNMgQkRUwolMyw3FLimnFFdQJYTiolWRaYyAkQAFRWwoXPgOas4L4whXEGesZLO0PXOtuurRq9Bt8NDtey8bZT_kE5Zeai09kVu3JvkGReUk8Gg2BmAdyF4bf5YguWYvDxMXu6TH0CyA13f_Zf5AeuPktI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</creator><creatorcontrib>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</creatorcontrib><description>Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information. Results We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement. Availability and implementation Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa907</identifier><identifier>PMID: 33098410</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Original Papers</subject><ispartof>Bioinformatics, 2021-07, Vol.37 (12), p.1739-1746</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</citedby><cites>FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</cites><orcidid>0000-0002-2330-6972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289381/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289381/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Asada, Masaki</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><title>Bioinformatics</title><description>Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information. Results We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement. Availability and implementation Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</description><subject>Original Papers</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkE1OwzAQhS0EoqVwBZQLhNqxk9gbJFTxJ1ViU9aWM7WLURJHtoNgxx24ISchaQtSd2xmRnrzvRk9hC4JviJY0HllnW2N842KFsK8ikoJXB6hKWEFTjOci-NhpkWZMo7pBJ2F8IpxThhjp2hCKRacETxFm-dg202y9v1QdABvu2hdGxLVrpPG1Rr6WvkkRN9D7L0OyXB0u_79-bWlbBu1VzBSiX6Pv6PxrklqO2ojd45OjKqDvtj3GVrd3a4WD-ny6f5xcbNMgQkRUwolMyw3FLimnFFdQJYTiolWRaYyAkQAFRWwoXPgOas4L4whXEGesZLO0PXOtuurRq9Bt8NDtey8bZT_kE5Zeai09kVu3JvkGReUk8Gg2BmAdyF4bf5YguWYvDxMXu6TH0CyA13f_Zf5AeuPktI</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Asada, Masaki</creator><creator>Miwa, Makoto</creator><creator>Sasaki, Yutaka</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2330-6972</orcidid></search><sort><creationdate>20210719</creationdate><title>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</title><author>Asada, Masaki ; Miwa, Makoto ; Sasaki, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3c74f45f3c8e3843e6c251301ea62a21c19c39bc419c8c854b886ff18ac52473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Original Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asada, Masaki</creatorcontrib><creatorcontrib>Miwa, Makoto</creatorcontrib><creatorcontrib>Sasaki, Yutaka</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asada, Masaki</au><au>Miwa, Makoto</au><au>Sasaki, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using drug descriptions and molecular structures for drug–drug interaction extraction from literature</atitle><jtitle>Bioinformatics</jtitle><date>2021-07-19</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1739</spage><epage>1746</epage><pages>1739-1746</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information. Results We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information and molecular structure information are complementary and their effective combination is essential for the improvement. Availability and implementation Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.</abstract><pub>Oxford University Press</pub><pmid>33098410</pmid><doi>10.1093/bioinformatics/btaa907</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2330-6972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2021-07, Vol.37 (12), p.1739-1746
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8289381
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Original Papers
title Using drug descriptions and molecular structures for drug–drug interaction extraction from literature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20drug%20descriptions%20and%20molecular%20structures%20for%20drug%E2%80%93drug%20interaction%20extraction%20from%20literature&rft.jtitle=Bioinformatics&rft.au=Asada,%20Masaki&rft.date=2021-07-19&rft.volume=37&rft.issue=12&rft.spage=1739&rft.epage=1746&rft.pages=1739-1746&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa907&rft_dat=%3Coup_pubme%3E10.1093/bioinformatics/btaa907%3C/oup_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33098410&rft_oup_id=10.1093/bioinformatics/btaa907&rfr_iscdi=true