Pair-based likelihood approximations for stochastic epidemic models

Fitting stochastic epidemic models to data is a non-standard problem because data on the infection processes defined in such models are rarely observed directly. This in turn means that the likelihood of the observed data is intractable in the sense that it is very computationally expensive to obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biostatistics (Oxford, England) England), 2021-07, Vol.22 (3), p.575-597
Hauptverfasser: Stockdale, Jessica E, Kypraios, Theodore, O’Neill, Philip D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 3
container_start_page 575
container_title Biostatistics (Oxford, England)
container_volume 22
creator Stockdale, Jessica E
Kypraios, Theodore
O’Neill, Philip D
description Fitting stochastic epidemic models to data is a non-standard problem because data on the infection processes defined in such models are rarely observed directly. This in turn means that the likelihood of the observed data is intractable in the sense that it is very computationally expensive to obtain. Although data-augmented Markov chain Monte Carlo (MCMC) methods provide a solution to this problem, employing a tractable augmented likelihood, such methods typically deteriorate in large populations due to poor mixing and increased computation time. Here, we describe a new approach that seeks to approximate the likelihood by exploiting the underlying structure of the epidemic model. Simulation study results show that this approach can be a serious competitor to data-augmented MCMC methods. Our approach can be applied to a wide variety of disease transmission models, and we provide examples with applications to the common cold, Ebola, and foot-and-mouth disease.
doi_str_mv 10.1093/biostatistics/kxz053
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8286555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322756386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c4626a85619c4efb276113b8c63753265f883709bed4a1bd9ccfbee6b755024e3</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhYMotlb_gYtZuhmb96QbQYovKOhC1yHJ3LGxM5MxmUr11zu1RejqHriH7xwOQpcEXxM8Y1PrQ-pN71PvXZquNj9YsCM0JlyqnDNRHP9pkXPJ-QidpfSBMaVMslM0YkRhpQgbo_mL8TG3JkGZ1X4FtV-GUGam62LY-GbghzZlVYhZ6oNbmm1aBp0voRlEE0qo0zk6qUyd4GJ_J-jt_u51_pgvnh-e5reL3DEl-txxSaVRQpKZ41BZWkhCmFVOskIwKkWlFCvwzELJDbHlzLnKAkhbCIEpBzZBNztut7YNlA7aPppad3HoGb91MF4fflq_1O_hSyuqpBBiAFztATF8riH1uvHJQV2bFsI6acooLYRkSg5WvrO6GFKKUP3HEKy3--uD_fVuf_YL4MF_QA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322756386</pqid></control><display><type>article</type><title>Pair-based likelihood approximations for stochastic epidemic models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Stockdale, Jessica E ; Kypraios, Theodore ; O’Neill, Philip D</creator><creatorcontrib>Stockdale, Jessica E ; Kypraios, Theodore ; O’Neill, Philip D</creatorcontrib><description>Fitting stochastic epidemic models to data is a non-standard problem because data on the infection processes defined in such models are rarely observed directly. This in turn means that the likelihood of the observed data is intractable in the sense that it is very computationally expensive to obtain. Although data-augmented Markov chain Monte Carlo (MCMC) methods provide a solution to this problem, employing a tractable augmented likelihood, such methods typically deteriorate in large populations due to poor mixing and increased computation time. Here, we describe a new approach that seeks to approximate the likelihood by exploiting the underlying structure of the epidemic model. Simulation study results show that this approach can be a serious competitor to data-augmented MCMC methods. Our approach can be applied to a wide variety of disease transmission models, and we provide examples with applications to the common cold, Ebola, and foot-and-mouth disease.</description><identifier>ISSN: 1465-4644</identifier><identifier>EISSN: 1468-4357</identifier><identifier>DOI: 10.1093/biostatistics/kxz053</identifier><identifier>PMID: 31808813</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Biostatistics (Oxford, England), 2021-07, Vol.22 (3), p.575-597</ispartof><rights>The Author 2019. Published by Oxford University Press. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c4626a85619c4efb276113b8c63753265f883709bed4a1bd9ccfbee6b755024e3</citedby><cites>FETCH-LOGICAL-c385t-c4626a85619c4efb276113b8c63753265f883709bed4a1bd9ccfbee6b755024e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Stockdale, Jessica E</creatorcontrib><creatorcontrib>Kypraios, Theodore</creatorcontrib><creatorcontrib>O’Neill, Philip D</creatorcontrib><title>Pair-based likelihood approximations for stochastic epidemic models</title><title>Biostatistics (Oxford, England)</title><description>Fitting stochastic epidemic models to data is a non-standard problem because data on the infection processes defined in such models are rarely observed directly. This in turn means that the likelihood of the observed data is intractable in the sense that it is very computationally expensive to obtain. Although data-augmented Markov chain Monte Carlo (MCMC) methods provide a solution to this problem, employing a tractable augmented likelihood, such methods typically deteriorate in large populations due to poor mixing and increased computation time. Here, we describe a new approach that seeks to approximate the likelihood by exploiting the underlying structure of the epidemic model. Simulation study results show that this approach can be a serious competitor to data-augmented MCMC methods. Our approach can be applied to a wide variety of disease transmission models, and we provide examples with applications to the common cold, Ebola, and foot-and-mouth disease.</description><issn>1465-4644</issn><issn>1468-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhYMotlb_gYtZuhmb96QbQYovKOhC1yHJ3LGxM5MxmUr11zu1RejqHriH7xwOQpcEXxM8Y1PrQ-pN71PvXZquNj9YsCM0JlyqnDNRHP9pkXPJ-QidpfSBMaVMslM0YkRhpQgbo_mL8TG3JkGZ1X4FtV-GUGam62LY-GbghzZlVYhZ6oNbmm1aBp0voRlEE0qo0zk6qUyd4GJ_J-jt_u51_pgvnh-e5reL3DEl-txxSaVRQpKZ41BZWkhCmFVOskIwKkWlFCvwzELJDbHlzLnKAkhbCIEpBzZBNztut7YNlA7aPppad3HoGb91MF4fflq_1O_hSyuqpBBiAFztATF8riH1uvHJQV2bFsI6acooLYRkSg5WvrO6GFKKUP3HEKy3--uD_fVuf_YL4MF_QA</recordid><startdate>20210717</startdate><enddate>20210717</enddate><creator>Stockdale, Jessica E</creator><creator>Kypraios, Theodore</creator><creator>O’Neill, Philip D</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210717</creationdate><title>Pair-based likelihood approximations for stochastic epidemic models</title><author>Stockdale, Jessica E ; Kypraios, Theodore ; O’Neill, Philip D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c4626a85619c4efb276113b8c63753265f883709bed4a1bd9ccfbee6b755024e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockdale, Jessica E</creatorcontrib><creatorcontrib>Kypraios, Theodore</creatorcontrib><creatorcontrib>O’Neill, Philip D</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biostatistics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockdale, Jessica E</au><au>Kypraios, Theodore</au><au>O’Neill, Philip D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pair-based likelihood approximations for stochastic epidemic models</atitle><jtitle>Biostatistics (Oxford, England)</jtitle><date>2021-07-17</date><risdate>2021</risdate><volume>22</volume><issue>3</issue><spage>575</spage><epage>597</epage><pages>575-597</pages><issn>1465-4644</issn><eissn>1468-4357</eissn><abstract>Fitting stochastic epidemic models to data is a non-standard problem because data on the infection processes defined in such models are rarely observed directly. This in turn means that the likelihood of the observed data is intractable in the sense that it is very computationally expensive to obtain. Although data-augmented Markov chain Monte Carlo (MCMC) methods provide a solution to this problem, employing a tractable augmented likelihood, such methods typically deteriorate in large populations due to poor mixing and increased computation time. Here, we describe a new approach that seeks to approximate the likelihood by exploiting the underlying structure of the epidemic model. Simulation study results show that this approach can be a serious competitor to data-augmented MCMC methods. Our approach can be applied to a wide variety of disease transmission models, and we provide examples with applications to the common cold, Ebola, and foot-and-mouth disease.</abstract><pub>Oxford University Press</pub><pmid>31808813</pmid><doi>10.1093/biostatistics/kxz053</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-4644
ispartof Biostatistics (Oxford, England), 2021-07, Vol.22 (3), p.575-597
issn 1465-4644
1468-4357
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8286555
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
title Pair-based likelihood approximations for stochastic epidemic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pair-based%20likelihood%20approximations%20for%20stochastic%20epidemic%20models&rft.jtitle=Biostatistics%20(Oxford,%20England)&rft.au=Stockdale,%20Jessica%20E&rft.date=2021-07-17&rft.volume=22&rft.issue=3&rft.spage=575&rft.epage=597&rft.pages=575-597&rft.issn=1465-4644&rft.eissn=1468-4357&rft_id=info:doi/10.1093/biostatistics/kxz053&rft_dat=%3Cproquest_pubme%3E2322756386%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322756386&rft_id=info:pmid/31808813&rfr_iscdi=true