Tensor-tensor algebra for optimal representation and compression of multiway data
With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (28), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 28 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Kilmer, Misha E. Horesh, Lior Avron, Haim Newman, Elizabeth |
description | With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD. |
doi_str_mv | 10.1073/pnas.2015851118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8285895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052425</jstor_id><sourcerecordid>27052425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-2a77178e2d8ff79800268329061253f6fe3210854cbb70183abe7f3e5e6a9b03</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVp6G42PefUYMglFyejL0u6FErIR2EhBPYuZK-08WJbjiS35L-vNptu2pxGmvnp8UYPoVMMlxgEvRoHEy8JYC45xlh-QnMMCpcVU_AZzQGIKCUjbIaOY9wCgOISvqAZZYQywGyOHld2iD6U6bUUptvYOpjC5bMfU9ubrgh2DDbaIZnU-qEww7pofL_rxd3du6KfutT-Ni_F2iRzgo6c6aL9-lYXaHV7s7q-L5cPdz-vfyzLhoNKJTFCYCEtWUvnhJLZayUpUVBhwqmrnKUEg-SsqWsBWFJTW-Go5bYyqga6QN_3suNU93bdZH_BdHoM2XN40d60-v_J0D7pjf-lJZFcKp4FLt4Egn-ebEy6b2Nju84M1k9RE85UJQVhKqPnH9Ctn8KQt8sU51hwRXGmrvZUE3yMwbqDGQx6l5bepaXf08ovzv7d4cD_jScD3_bANiYfDnMigBOWv-kPiY2bAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555175931</pqid></control><display><type>article</type><title>Tensor-tensor algebra for optimal representation and compression of multiway data</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kilmer, Misha E. ; Horesh, Lior ; Avron, Haim ; Newman, Elizabeth</creator><creatorcontrib>Kilmer, Misha E. ; Horesh, Lior ; Avron, Haim ; Newman, Elizabeth</creatorcontrib><description>With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2015851118</identifier><identifier>PMID: 34234014</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Compressibility ; Compression ; Datasets ; Distillation ; Feature extraction ; Learning algorithms ; Machine learning ; Mathematical analysis ; Matrices (mathematics) ; Matrix algebra ; Optimization ; Physical Sciences ; Representations ; Singular value decomposition ; Tensors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (28), p.1-12</ispartof><rights>Copyright National Academy of Sciences Jul 13, 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-2a77178e2d8ff79800268329061253f6fe3210854cbb70183abe7f3e5e6a9b03</citedby><cites>FETCH-LOGICAL-c509t-2a77178e2d8ff79800268329061253f6fe3210854cbb70183abe7f3e5e6a9b03</cites><orcidid>0000-0003-4249-4742 ; 0000-0001-6350-0238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052425$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052425$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34234014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kilmer, Misha E.</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Newman, Elizabeth</creatorcontrib><title>Tensor-tensor algebra for optimal representation and compression of multiway data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD.</description><subject>Compressibility</subject><subject>Compression</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Representations</subject><subject>Singular value decomposition</subject><subject>Tensors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVp6G42PefUYMglFyejL0u6FErIR2EhBPYuZK-08WJbjiS35L-vNptu2pxGmvnp8UYPoVMMlxgEvRoHEy8JYC45xlh-QnMMCpcVU_AZzQGIKCUjbIaOY9wCgOISvqAZZYQywGyOHld2iD6U6bUUptvYOpjC5bMfU9ubrgh2DDbaIZnU-qEww7pofL_rxd3du6KfutT-Ni_F2iRzgo6c6aL9-lYXaHV7s7q-L5cPdz-vfyzLhoNKJTFCYCEtWUvnhJLZayUpUVBhwqmrnKUEg-SsqWsBWFJTW-Go5bYyqga6QN_3suNU93bdZH_BdHoM2XN40d60-v_J0D7pjf-lJZFcKp4FLt4Egn-ebEy6b2Nju84M1k9RE85UJQVhKqPnH9Ctn8KQt8sU51hwRXGmrvZUE3yMwbqDGQx6l5bepaXf08ovzv7d4cD_jScD3_bANiYfDnMigBOWv-kPiY2bAQ</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Kilmer, Misha E.</creator><creator>Horesh, Lior</creator><creator>Avron, Haim</creator><creator>Newman, Elizabeth</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4249-4742</orcidid><orcidid>https://orcid.org/0000-0001-6350-0238</orcidid></search><sort><creationdate>20210713</creationdate><title>Tensor-tensor algebra for optimal representation and compression of multiway data</title><author>Kilmer, Misha E. ; Horesh, Lior ; Avron, Haim ; Newman, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-2a77178e2d8ff79800268329061253f6fe3210854cbb70183abe7f3e5e6a9b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressibility</topic><topic>Compression</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Representations</topic><topic>Singular value decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilmer, Misha E.</creatorcontrib><creatorcontrib>Horesh, Lior</creatorcontrib><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Newman, Elizabeth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilmer, Misha E.</au><au>Horesh, Lior</au><au>Avron, Haim</au><au>Newman, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-tensor algebra for optimal representation and compression of multiway data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-13</date><risdate>2021</risdate><volume>118</volume><issue>28</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34234014</pmid><doi>10.1073/pnas.2015851118</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4249-4742</orcidid><orcidid>https://orcid.org/0000-0001-6350-0238</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (28), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8285895 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Compressibility Compression Datasets Distillation Feature extraction Learning algorithms Machine learning Mathematical analysis Matrices (mathematics) Matrix algebra Optimization Physical Sciences Representations Singular value decomposition Tensors |
title | Tensor-tensor algebra for optimal representation and compression of multiway data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-tensor%20algebra%20for%20optimal%20representation%20and%20compression%20of%20multiway%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kilmer,%20Misha%20E.&rft.date=2021-07-13&rft.volume=118&rft.issue=28&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2015851118&rft_dat=%3Cjstor_pubme%3E27052425%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555175931&rft_id=info:pmid/34234014&rft_jstor_id=27052425&rfr_iscdi=true |