Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis

BACKGROUNDAtrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising interest to determine if AF severity or burden can further risk stratify these patients, particularly for near-term events. Using continuous remote monitoring data from cardiac implantable electronic devices,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation Cardiovascular quality and outcomes 2019-10, Vol.12 (10), p.e005595-e005595
Hauptverfasser: Han, Lichy, Askari, Mariam, Altman, Russ B., Schmitt, Susan K., Fan, Jun, Bentley, Jason P., Narayan, Sanjiv M., Turakhia, Mintu P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e005595
container_issue 10
container_start_page e005595
container_title Circulation Cardiovascular quality and outcomes
container_volume 12
creator Han, Lichy
Askari, Mariam
Altman, Russ B.
Schmitt, Susan K.
Fan, Jun
Bentley, Jason P.
Narayan, Sanjiv M.
Turakhia, Mintu P.
description BACKGROUNDAtrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising interest to determine if AF severity or burden can further risk stratify these patients, particularly for near-term events. Using continuous remote monitoring data from cardiac implantable electronic devices, we sought to evaluate if machine learned signatures of AF burden could provide prognostic information on near-term risk of stroke when compared to conventional risk scores. METHODS AND RESULTSWe retrospectively identified Veterans Health Administration serviced patients with cardiac implantable electronic device remote monitoring data and at least one day of device-registered AF. The first 30 days of remote monitoring in nonstroke controls were compared against the past 30 days of remote monitoring before stroke in cases. We trained 3 types of models on our data: (1) convolutional neural networks, (2) random forest, and (3) L1 regularized logistic regression (LASSO). We calculated the CHA2DS2-VASc score for each patient and compared its performance against machine learned indices based on AF burden in separate test cohorts. Finally, we investigated the effect of combining our AF burden models with CHA2DS2-VASc. We identified 3114 nonstroke controls and 71 stroke cases, with no significant differences in baseline characteristics. Random forest performed the best in the test data set (area under the curve [AUC]=0.662) and convolutional neural network in the validation dataset (AUC=0.702), whereas CHA2DS2-VASc had an AUC of 0.5 or less in both data sets. Combining CHA2DS2-VASc with random forest and convolutional neural network yielded a validation AUC of 0.696 and test AUC of 0.634, yielding the highest average AUC on nontraining data. CONCLUSIONSThis proof-of-concept study found that machine learning and ensemble methods that incorporate daily AF burden signature provided incremental prognostic value for risk stratification beyond CHA2DS2-VASc for near-term risk of stroke.
doi_str_mv 10.1161/CIRCOUTCOMES.118.005595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8284982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305801320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ae670330bdfe0980ebd828def59ff82a5ff859cb2bf0e3e368dd046d0e4e23093</originalsourceid><addsrcrecordid>eNpVkU9PwkAQxTdGI4h-Bnv0Upzd7Z_txQQbQBIUI3DebLtTXC0tblsTv72rEKKXmcnMy-9l8gi5pjCkNKK36ewlXaxX6eJxvHQbMQQIwyQ8IX2aBNSPYwhPjzPlPXLRNG8AEWcRPyc97hgQU9Yn01FrjSq9icmsKUvVmrry7jursfKWZlOptrPoqUp7T6isv0K79Z4tapP_KuvCW7a2fsdLclaossGrQx-Q9WS8Sh_8-WI6S0dzP2cJbX2FUQycQ6YLhEQAZlowobEIk6IQTIWuhkmesawA5MgjoTUEkQYMkHFI-IDc7bm7LtuizrFqrSrlzpqtsl-yVkb-v1TmVW7qT-lsgkQwB7g5AGz90WHTyq1pcnSvV1h3jXQuoQDKGThpvJfmtm4ai8XRhoL8iUH-jcFthNzHwL8B6d98vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305801320</pqid></control><display><type>article</type><title>Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis</title><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Han, Lichy ; Askari, Mariam ; Altman, Russ B. ; Schmitt, Susan K. ; Fan, Jun ; Bentley, Jason P. ; Narayan, Sanjiv M. ; Turakhia, Mintu P.</creator><creatorcontrib>Han, Lichy ; Askari, Mariam ; Altman, Russ B. ; Schmitt, Susan K. ; Fan, Jun ; Bentley, Jason P. ; Narayan, Sanjiv M. ; Turakhia, Mintu P.</creatorcontrib><description>BACKGROUNDAtrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising interest to determine if AF severity or burden can further risk stratify these patients, particularly for near-term events. Using continuous remote monitoring data from cardiac implantable electronic devices, we sought to evaluate if machine learned signatures of AF burden could provide prognostic information on near-term risk of stroke when compared to conventional risk scores. METHODS AND RESULTSWe retrospectively identified Veterans Health Administration serviced patients with cardiac implantable electronic device remote monitoring data and at least one day of device-registered AF. The first 30 days of remote monitoring in nonstroke controls were compared against the past 30 days of remote monitoring before stroke in cases. We trained 3 types of models on our data: (1) convolutional neural networks, (2) random forest, and (3) L1 regularized logistic regression (LASSO). We calculated the CHA2DS2-VASc score for each patient and compared its performance against machine learned indices based on AF burden in separate test cohorts. Finally, we investigated the effect of combining our AF burden models with CHA2DS2-VASc. We identified 3114 nonstroke controls and 71 stroke cases, with no significant differences in baseline characteristics. Random forest performed the best in the test data set (area under the curve [AUC]=0.662) and convolutional neural network in the validation dataset (AUC=0.702), whereas CHA2DS2-VASc had an AUC of 0.5 or less in both data sets. Combining CHA2DS2-VASc with random forest and convolutional neural network yielded a validation AUC of 0.696 and test AUC of 0.634, yielding the highest average AUC on nontraining data. CONCLUSIONSThis proof-of-concept study found that machine learning and ensemble methods that incorporate daily AF burden signature provided incremental prognostic value for risk stratification beyond CHA2DS2-VASc for near-term risk of stroke.</description><identifier>ISSN: 1941-7713</identifier><identifier>EISSN: 1941-7705</identifier><identifier>DOI: 10.1161/CIRCOUTCOMES.118.005595</identifier><identifier>PMID: 31610712</identifier><language>eng</language><ispartof>Circulation Cardiovascular quality and outcomes, 2019-10, Vol.12 (10), p.e005595-e005595</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-ae670330bdfe0980ebd828def59ff82a5ff859cb2bf0e3e368dd046d0e4e23093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3674,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Lichy</creatorcontrib><creatorcontrib>Askari, Mariam</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Schmitt, Susan K.</creatorcontrib><creatorcontrib>Fan, Jun</creatorcontrib><creatorcontrib>Bentley, Jason P.</creatorcontrib><creatorcontrib>Narayan, Sanjiv M.</creatorcontrib><creatorcontrib>Turakhia, Mintu P.</creatorcontrib><title>Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis</title><title>Circulation Cardiovascular quality and outcomes</title><description>BACKGROUNDAtrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising interest to determine if AF severity or burden can further risk stratify these patients, particularly for near-term events. Using continuous remote monitoring data from cardiac implantable electronic devices, we sought to evaluate if machine learned signatures of AF burden could provide prognostic information on near-term risk of stroke when compared to conventional risk scores. METHODS AND RESULTSWe retrospectively identified Veterans Health Administration serviced patients with cardiac implantable electronic device remote monitoring data and at least one day of device-registered AF. The first 30 days of remote monitoring in nonstroke controls were compared against the past 30 days of remote monitoring before stroke in cases. We trained 3 types of models on our data: (1) convolutional neural networks, (2) random forest, and (3) L1 regularized logistic regression (LASSO). We calculated the CHA2DS2-VASc score for each patient and compared its performance against machine learned indices based on AF burden in separate test cohorts. Finally, we investigated the effect of combining our AF burden models with CHA2DS2-VASc. We identified 3114 nonstroke controls and 71 stroke cases, with no significant differences in baseline characteristics. Random forest performed the best in the test data set (area under the curve [AUC]=0.662) and convolutional neural network in the validation dataset (AUC=0.702), whereas CHA2DS2-VASc had an AUC of 0.5 or less in both data sets. Combining CHA2DS2-VASc with random forest and convolutional neural network yielded a validation AUC of 0.696 and test AUC of 0.634, yielding the highest average AUC on nontraining data. CONCLUSIONSThis proof-of-concept study found that machine learning and ensemble methods that incorporate daily AF burden signature provided incremental prognostic value for risk stratification beyond CHA2DS2-VASc for near-term risk of stroke.</description><issn>1941-7713</issn><issn>1941-7705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkU9PwkAQxTdGI4h-Bnv0Upzd7Z_txQQbQBIUI3DebLtTXC0tblsTv72rEKKXmcnMy-9l8gi5pjCkNKK36ewlXaxX6eJxvHQbMQQIwyQ8IX2aBNSPYwhPjzPlPXLRNG8AEWcRPyc97hgQU9Yn01FrjSq9icmsKUvVmrry7jursfKWZlOptrPoqUp7T6isv0K79Z4tapP_KuvCW7a2fsdLclaossGrQx-Q9WS8Sh_8-WI6S0dzP2cJbX2FUQycQ6YLhEQAZlowobEIk6IQTIWuhkmesawA5MgjoTUEkQYMkHFI-IDc7bm7LtuizrFqrSrlzpqtsl-yVkb-v1TmVW7qT-lsgkQwB7g5AGz90WHTyq1pcnSvV1h3jXQuoQDKGThpvJfmtm4ai8XRhoL8iUH-jcFthNzHwL8B6d98vA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Han, Lichy</creator><creator>Askari, Mariam</creator><creator>Altman, Russ B.</creator><creator>Schmitt, Susan K.</creator><creator>Fan, Jun</creator><creator>Bentley, Jason P.</creator><creator>Narayan, Sanjiv M.</creator><creator>Turakhia, Mintu P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201910</creationdate><title>Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke</title><author>Han, Lichy ; Askari, Mariam ; Altman, Russ B. ; Schmitt, Susan K. ; Fan, Jun ; Bentley, Jason P. ; Narayan, Sanjiv M. ; Turakhia, Mintu P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ae670330bdfe0980ebd828def59ff82a5ff859cb2bf0e3e368dd046d0e4e23093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lichy</creatorcontrib><creatorcontrib>Askari, Mariam</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Schmitt, Susan K.</creatorcontrib><creatorcontrib>Fan, Jun</creatorcontrib><creatorcontrib>Bentley, Jason P.</creatorcontrib><creatorcontrib>Narayan, Sanjiv M.</creatorcontrib><creatorcontrib>Turakhia, Mintu P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation Cardiovascular quality and outcomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lichy</au><au>Askari, Mariam</au><au>Altman, Russ B.</au><au>Schmitt, Susan K.</au><au>Fan, Jun</au><au>Bentley, Jason P.</au><au>Narayan, Sanjiv M.</au><au>Turakhia, Mintu P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis</atitle><jtitle>Circulation Cardiovascular quality and outcomes</jtitle><date>2019-10</date><risdate>2019</risdate><volume>12</volume><issue>10</issue><spage>e005595</spage><epage>e005595</epage><pages>e005595-e005595</pages><issn>1941-7713</issn><eissn>1941-7705</eissn><abstract>BACKGROUNDAtrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising interest to determine if AF severity or burden can further risk stratify these patients, particularly for near-term events. Using continuous remote monitoring data from cardiac implantable electronic devices, we sought to evaluate if machine learned signatures of AF burden could provide prognostic information on near-term risk of stroke when compared to conventional risk scores. METHODS AND RESULTSWe retrospectively identified Veterans Health Administration serviced patients with cardiac implantable electronic device remote monitoring data and at least one day of device-registered AF. The first 30 days of remote monitoring in nonstroke controls were compared against the past 30 days of remote monitoring before stroke in cases. We trained 3 types of models on our data: (1) convolutional neural networks, (2) random forest, and (3) L1 regularized logistic regression (LASSO). We calculated the CHA2DS2-VASc score for each patient and compared its performance against machine learned indices based on AF burden in separate test cohorts. Finally, we investigated the effect of combining our AF burden models with CHA2DS2-VASc. We identified 3114 nonstroke controls and 71 stroke cases, with no significant differences in baseline characteristics. Random forest performed the best in the test data set (area under the curve [AUC]=0.662) and convolutional neural network in the validation dataset (AUC=0.702), whereas CHA2DS2-VASc had an AUC of 0.5 or less in both data sets. Combining CHA2DS2-VASc with random forest and convolutional neural network yielded a validation AUC of 0.696 and test AUC of 0.634, yielding the highest average AUC on nontraining data. CONCLUSIONSThis proof-of-concept study found that machine learning and ensemble methods that incorporate daily AF burden signature provided incremental prognostic value for risk stratification beyond CHA2DS2-VASc for near-term risk of stroke.</abstract><pmid>31610712</pmid><doi>10.1161/CIRCOUTCOMES.118.005595</doi></addata></record>
fulltext fulltext
identifier ISSN: 1941-7713
ispartof Circulation Cardiovascular quality and outcomes, 2019-10, Vol.12 (10), p.e005595-e005595
issn 1941-7713
1941-7705
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8284982
source American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: A Machine Learning Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atrial%20Fibrillation%20Burden%20Signature%20and%20Near-Term%20Prediction%20of%20Stroke:%20A%20Machine%20Learning%20Analysis&rft.jtitle=Circulation%20Cardiovascular%20quality%20and%20outcomes&rft.au=Han,%20Lichy&rft.date=2019-10&rft.volume=12&rft.issue=10&rft.spage=e005595&rft.epage=e005595&rft.pages=e005595-e005595&rft.issn=1941-7713&rft.eissn=1941-7705&rft_id=info:doi/10.1161/CIRCOUTCOMES.118.005595&rft_dat=%3Cproquest_pubme%3E2305801320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305801320&rft_id=info:pmid/31610712&rfr_iscdi=true