Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation

Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2021, Vol.2021 (1), p.5595652-5595652
Hauptverfasser: Yu, Lei, Yang, Xiangshan, Li, Xin, Qin, Lijing, Xu, Weiqiang, Cui, Hongli, Jia, Zhen, He, Qiang, Wang, Zhicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5595652
container_issue 1
container_start_page 5595652
container_title Oxidative medicine and cellular longevity
container_volume 2021
creator Yu, Lei
Yang, Xiangshan
Li, Xin
Qin, Lijing
Xu, Weiqiang
Cui, Hongli
Jia, Zhen
He, Qiang
Wang, Zhicheng
description Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.
doi_str_mv 10.1155/2021/5595652
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552746284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-1123999cd22f92625276314213ab6d87089c6cb5a4e5583f97e12b52e899df103</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxYMoVqs3z7LgRdC1ySTZ3VyEUj-xolQ9Skh3szbaJnWzVepfb2prUQ-eZob58XiPh9AOwUeEcN4CDKTFueAJhxW0QQSDGAvBVpc7xg206f0zxgkFRtZRgzIadkI20OOtsS-kddvuXUFr1Lu5i0_0WNtC2zq6NrUbD9TTNLq0pjaq1j6qBzq609aH-0PVxtnIlVFH2VxXUUcPh4FwUU8V5uu5hdZKNfR6ezGb6OHs9L5zEXdvzi877W6cc8LqmBCgQoi8ACgFJMAhDe4YEKr6SZGlOBN5kve5YprzjJYi1QT6HHQmRFESTJvoeK47nvRHusiD-0oN5bgyI1VNpVNG_v5YM5BP7k1mkIqMiyCwvxCo3OtE-1qOjM9DHmW1m3gJnHPKMkFn6N4f9NlNKhvizShIWQIZC9ThnMor532ly6UZguWsNznrTS56C_juzwBL-LuoABzMgYGxhXo3_8t9Ag6fndo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552746284</pqid></control><display><type>article</type><title>Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yu, Lei ; Yang, Xiangshan ; Li, Xin ; Qin, Lijing ; Xu, Weiqiang ; Cui, Hongli ; Jia, Zhen ; He, Qiang ; Wang, Zhicheng</creator><contributor>Alexander, Ivanov ; Ivanov Alexander</contributor><creatorcontrib>Yu, Lei ; Yang, Xiangshan ; Li, Xin ; Qin, Lijing ; Xu, Weiqiang ; Cui, Hongli ; Jia, Zhen ; He, Qiang ; Wang, Zhicheng ; Alexander, Ivanov ; Ivanov Alexander</creatorcontrib><description>Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2021/5595652</identifier><identifier>PMID: 34306311</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Acetylcysteine - pharmacology ; Apoptosis ; Autophagy ; Autophagy - drug effects ; Autophagy - physiology ; Cancer therapies ; Endoplasmic reticulum ; Flow cytometry ; Humans ; Kinases ; Light ; Localization ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - physiology ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitophagy - drug effects ; Mitophagy - physiology ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Oxidative stress ; Plasmids ; Proteins ; Radiation therapy ; Radiation, Ionizing ; Reactive Oxygen Species - metabolism ; Reagents ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Oxidative medicine and cellular longevity, 2021, Vol.2021 (1), p.5595652-5595652</ispartof><rights>Copyright © 2021 Lei Yu et al.</rights><rights>Copyright © 2021 Lei Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Lei Yu et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-1123999cd22f92625276314213ab6d87089c6cb5a4e5583f97e12b52e899df103</citedby><cites>FETCH-LOGICAL-c514t-1123999cd22f92625276314213ab6d87089c6cb5a4e5583f97e12b52e899df103</cites><orcidid>0000-0001-5585-0617 ; 0000-0002-2929-6066 ; 0000-0003-3529-3432 ; 0000-0003-1259-9236 ; 0000-0002-7617-3165 ; 0000-0003-1903-1926 ; 0000-0003-0010-9228 ; 0000-0002-7561-5785 ; 0000-0001-6558-1879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,4025,27925,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34306311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alexander, Ivanov</contributor><contributor>Ivanov Alexander</contributor><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Yang, Xiangshan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Qin, Lijing</creatorcontrib><creatorcontrib>Xu, Weiqiang</creatorcontrib><creatorcontrib>Cui, Hongli</creatorcontrib><creatorcontrib>Jia, Zhen</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Zhicheng</creatorcontrib><title>Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.</description><subject>Acetylcysteine - pharmacology</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - physiology</subject><subject>Cancer therapies</subject><subject>Endoplasmic reticulum</subject><subject>Flow cytometry</subject><subject>Humans</subject><subject>Kinases</subject><subject>Light</subject><subject>Localization</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitophagy - drug effects</subject><subject>Mitophagy - physiology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Oxidative stress</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Radiation therapy</subject><subject>Radiation, Ionizing</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reagents</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1LAzEQxYMoVqs3z7LgRdC1ySTZ3VyEUj-xolQ9Skh3szbaJnWzVepfb2prUQ-eZob58XiPh9AOwUeEcN4CDKTFueAJhxW0QQSDGAvBVpc7xg206f0zxgkFRtZRgzIadkI20OOtsS-kddvuXUFr1Lu5i0_0WNtC2zq6NrUbD9TTNLq0pjaq1j6qBzq609aH-0PVxtnIlVFH2VxXUUcPh4FwUU8V5uu5hdZKNfR6ezGb6OHs9L5zEXdvzi877W6cc8LqmBCgQoi8ACgFJMAhDe4YEKr6SZGlOBN5kve5YprzjJYi1QT6HHQmRFESTJvoeK47nvRHusiD-0oN5bgyI1VNpVNG_v5YM5BP7k1mkIqMiyCwvxCo3OtE-1qOjM9DHmW1m3gJnHPKMkFn6N4f9NlNKhvizShIWQIZC9ThnMor532ly6UZguWsNznrTS56C_juzwBL-LuoABzMgYGxhXo3_8t9Ag6fndo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yu, Lei</creator><creator>Yang, Xiangshan</creator><creator>Li, Xin</creator><creator>Qin, Lijing</creator><creator>Xu, Weiqiang</creator><creator>Cui, Hongli</creator><creator>Jia, Zhen</creator><creator>He, Qiang</creator><creator>Wang, Zhicheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5585-0617</orcidid><orcidid>https://orcid.org/0000-0002-2929-6066</orcidid><orcidid>https://orcid.org/0000-0003-3529-3432</orcidid><orcidid>https://orcid.org/0000-0003-1259-9236</orcidid><orcidid>https://orcid.org/0000-0002-7617-3165</orcidid><orcidid>https://orcid.org/0000-0003-1903-1926</orcidid><orcidid>https://orcid.org/0000-0003-0010-9228</orcidid><orcidid>https://orcid.org/0000-0002-7561-5785</orcidid><orcidid>https://orcid.org/0000-0001-6558-1879</orcidid></search><sort><creationdate>2021</creationdate><title>Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation</title><author>Yu, Lei ; Yang, Xiangshan ; Li, Xin ; Qin, Lijing ; Xu, Weiqiang ; Cui, Hongli ; Jia, Zhen ; He, Qiang ; Wang, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-1123999cd22f92625276314213ab6d87089c6cb5a4e5583f97e12b52e899df103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylcysteine - pharmacology</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - physiology</topic><topic>Cancer therapies</topic><topic>Endoplasmic reticulum</topic><topic>Flow cytometry</topic><topic>Humans</topic><topic>Kinases</topic><topic>Light</topic><topic>Localization</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitophagy - drug effects</topic><topic>Mitophagy - physiology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Oxidative stress</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Radiation therapy</topic><topic>Radiation, Ionizing</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reagents</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Yang, Xiangshan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Qin, Lijing</creatorcontrib><creatorcontrib>Xu, Weiqiang</creatorcontrib><creatorcontrib>Cui, Hongli</creatorcontrib><creatorcontrib>Jia, Zhen</creatorcontrib><creatorcontrib>He, Qiang</creatorcontrib><creatorcontrib>Wang, Zhicheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lei</au><au>Yang, Xiangshan</au><au>Li, Xin</au><au>Qin, Lijing</au><au>Xu, Weiqiang</au><au>Cui, Hongli</au><au>Jia, Zhen</au><au>He, Qiang</au><au>Wang, Zhicheng</au><au>Alexander, Ivanov</au><au>Ivanov Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>5595652</spage><epage>5595652</epage><pages>5595652-5595652</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34306311</pmid><doi>10.1155/2021/5595652</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5585-0617</orcidid><orcidid>https://orcid.org/0000-0002-2929-6066</orcidid><orcidid>https://orcid.org/0000-0003-3529-3432</orcidid><orcidid>https://orcid.org/0000-0003-1259-9236</orcidid><orcidid>https://orcid.org/0000-0002-7617-3165</orcidid><orcidid>https://orcid.org/0000-0003-1903-1926</orcidid><orcidid>https://orcid.org/0000-0003-0010-9228</orcidid><orcidid>https://orcid.org/0000-0002-7561-5785</orcidid><orcidid>https://orcid.org/0000-0001-6558-1879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2021, Vol.2021 (1), p.5595652-5595652
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279859
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Acetylcysteine - pharmacology
Apoptosis
Autophagy
Autophagy - drug effects
Autophagy - physiology
Cancer therapies
Endoplasmic reticulum
Flow cytometry
Humans
Kinases
Light
Localization
Membrane Potential, Mitochondrial - drug effects
Membrane Potential, Mitochondrial - physiology
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitophagy - drug effects
Mitophagy - physiology
Neoplasms - drug therapy
Neoplasms - metabolism
Oxidative stress
Plasmids
Proteins
Radiation therapy
Radiation, Ionizing
Reactive Oxygen Species - metabolism
Reagents
Ubiquitin-Protein Ligases - metabolism
title Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pink1/PARK2/mROS-Dependent%20Mitophagy%20Initiates%20the%20Sensitization%20of%20Cancer%20Cells%20to%20Radiation&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Yu,%20Lei&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=5595652&rft.epage=5595652&rft.pages=5595652-5595652&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2021/5595652&rft_dat=%3Cproquest_pubme%3E2552746284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552746284&rft_id=info:pmid/34306311&rfr_iscdi=true