Quantum-Classical Simulation of Molecular Motors Driven Only by Light

Molecular motors that exhibit controlled unidirectional rotation provide great prospects for many types of applications, including nanorobotics. Existing rotational motors have two key components: photoisomerization around a π-bond followed by a thermally activated helical inversion, the latter bein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-06, Vol.12 (23), p.5512-5518
Hauptverfasser: Majumdar, Atreya, Jansen, Thomas L. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5518
container_issue 23
container_start_page 5512
container_title The journal of physical chemistry letters
container_volume 12
creator Majumdar, Atreya
Jansen, Thomas L. C
description Molecular motors that exhibit controlled unidirectional rotation provide great prospects for many types of applications, including nanorobotics. Existing rotational motors have two key components: photoisomerization around a π-bond followed by a thermally activated helical inversion, the latter being the rate-determining step. We propose an alternative molecular system in which the rotation is caused by the electric coupling of chromophores. This is used to engineer the excited state energy surface and achieve unidirectional rotation using light as the only input and avoid the slow thermally activated step, potentially leading to much faster operational speeds. To test the working principle, we employ quantum-classical calculations to study the dynamics of such a system. We estimate that motors built on this principle should be able to work on a subnanosecond time scale for such a full rotation. We explore the parameter space of our model to guide the design of a molecule that can act as such a motor.
doi_str_mv 10.1021/acs.jpclett.1c00951
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538049826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-bd627483728d4412bbbb20bb00336fee3faa1c993ef636d48efc1ef11fe622c83</originalsourceid><addsrcrecordid>eNp9UUtLAzEQDqJYrf4CL3v0sm0e-8heBKn1AZUi6jlks0mbkt3UJFvovzfaRfTiXGaG7zEwHwBXCE4QxGjKhZ9stsLIECZIQFjl6AicoSqjaYlofvxrHoFz7zcQFhWk5SkYkQxWRYnzMzB_6XkX-jadGe69Ftwkr7rtDQ_adolVybM1UsTdxSlY55M7p3eyS5ad2Sf1Plno1TpcgBPFjZeXQx-D9_v52-wxXSwfnma3i5RnGIe0bgpcZpSUmDZZhnAdC8O6hpCQQklJFOdIVBWRqiBFk1GpBJIKISULjAUlY3Bz8N32dSsbIbvguGFbp1vu9sxyzf4inV6zld0xisuqJGU0uB4MnP3opQ-s1V5IY3gnbe8ZzgmFWUVxEankQBXOeu-k-jmDIPsKgMUA2BAAGwKIqulB9Q3a3nXxH_8qPgGLL4yd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538049826</pqid></control><display><type>article</type><title>Quantum-Classical Simulation of Molecular Motors Driven Only by Light</title><source>ACS Publications</source><creator>Majumdar, Atreya ; Jansen, Thomas L. C</creator><creatorcontrib>Majumdar, Atreya ; Jansen, Thomas L. C</creatorcontrib><description>Molecular motors that exhibit controlled unidirectional rotation provide great prospects for many types of applications, including nanorobotics. Existing rotational motors have two key components: photoisomerization around a π-bond followed by a thermally activated helical inversion, the latter being the rate-determining step. We propose an alternative molecular system in which the rotation is caused by the electric coupling of chromophores. This is used to engineer the excited state energy surface and achieve unidirectional rotation using light as the only input and avoid the slow thermally activated step, potentially leading to much faster operational speeds. To test the working principle, we employ quantum-classical calculations to study the dynamics of such a system. We estimate that motors built on this principle should be able to work on a subnanosecond time scale for such a full rotation. We explore the parameter space of our model to guide the design of a molecule that can act as such a motor.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c00951</identifier><identifier>PMID: 34096725</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Letter ; Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2021-06, Vol.12 (23), p.5512-5518</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-bd627483728d4412bbbb20bb00336fee3faa1c993ef636d48efc1ef11fe622c83</citedby><cites>FETCH-LOGICAL-a422t-bd627483728d4412bbbb20bb00336fee3faa1c993ef636d48efc1ef11fe622c83</cites><orcidid>0000-0002-6547-2231 ; 0000-0001-6066-6080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00951$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00951$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Majumdar, Atreya</creatorcontrib><creatorcontrib>Jansen, Thomas L. C</creatorcontrib><title>Quantum-Classical Simulation of Molecular Motors Driven Only by Light</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Molecular motors that exhibit controlled unidirectional rotation provide great prospects for many types of applications, including nanorobotics. Existing rotational motors have two key components: photoisomerization around a π-bond followed by a thermally activated helical inversion, the latter being the rate-determining step. We propose an alternative molecular system in which the rotation is caused by the electric coupling of chromophores. This is used to engineer the excited state energy surface and achieve unidirectional rotation using light as the only input and avoid the slow thermally activated step, potentially leading to much faster operational speeds. To test the working principle, we employ quantum-classical calculations to study the dynamics of such a system. We estimate that motors built on this principle should be able to work on a subnanosecond time scale for such a full rotation. We explore the parameter space of our model to guide the design of a molecule that can act as such a motor.</description><subject>Letter</subject><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UUtLAzEQDqJYrf4CL3v0sm0e-8heBKn1AZUi6jlks0mbkt3UJFvovzfaRfTiXGaG7zEwHwBXCE4QxGjKhZ9stsLIECZIQFjl6AicoSqjaYlofvxrHoFz7zcQFhWk5SkYkQxWRYnzMzB_6XkX-jadGe69Ftwkr7rtDQ_adolVybM1UsTdxSlY55M7p3eyS5ad2Sf1Plno1TpcgBPFjZeXQx-D9_v52-wxXSwfnma3i5RnGIe0bgpcZpSUmDZZhnAdC8O6hpCQQklJFOdIVBWRqiBFk1GpBJIKISULjAUlY3Bz8N32dSsbIbvguGFbp1vu9sxyzf4inV6zld0xisuqJGU0uB4MnP3opQ-s1V5IY3gnbe8ZzgmFWUVxEankQBXOeu-k-jmDIPsKgMUA2BAAGwKIqulB9Q3a3nXxH_8qPgGLL4yd</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Majumdar, Atreya</creator><creator>Jansen, Thomas L. C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6547-2231</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid></search><sort><creationdate>20210617</creationdate><title>Quantum-Classical Simulation of Molecular Motors Driven Only by Light</title><author>Majumdar, Atreya ; Jansen, Thomas L. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-bd627483728d4412bbbb20bb00336fee3faa1c993ef636d48efc1ef11fe622c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Letter</topic><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumdar, Atreya</creatorcontrib><creatorcontrib>Jansen, Thomas L. C</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumdar, Atreya</au><au>Jansen, Thomas L. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum-Classical Simulation of Molecular Motors Driven Only by Light</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-06-17</date><risdate>2021</risdate><volume>12</volume><issue>23</issue><spage>5512</spage><epage>5518</epage><pages>5512-5518</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Molecular motors that exhibit controlled unidirectional rotation provide great prospects for many types of applications, including nanorobotics. Existing rotational motors have two key components: photoisomerization around a π-bond followed by a thermally activated helical inversion, the latter being the rate-determining step. We propose an alternative molecular system in which the rotation is caused by the electric coupling of chromophores. This is used to engineer the excited state energy surface and achieve unidirectional rotation using light as the only input and avoid the slow thermally activated step, potentially leading to much faster operational speeds. To test the working principle, we employ quantum-classical calculations to study the dynamics of such a system. We estimate that motors built on this principle should be able to work on a subnanosecond time scale for such a full rotation. We explore the parameter space of our model to guide the design of a molecule that can act as such a motor.</abstract><pub>American Chemical Society</pub><pmid>34096725</pmid><doi>10.1021/acs.jpclett.1c00951</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6547-2231</orcidid><orcidid>https://orcid.org/0000-0001-6066-6080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-06, Vol.12 (23), p.5512-5518
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279737
source ACS Publications
subjects Letter
Physical Insights into Materials and Molecular Properties
title Quantum-Classical Simulation of Molecular Motors Driven Only by Light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum-Classical%20Simulation%20of%20Molecular%20Motors%20Driven%20Only%20by%20Light&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Majumdar,%20Atreya&rft.date=2021-06-17&rft.volume=12&rft.issue=23&rft.spage=5512&rft.epage=5518&rft.pages=5512-5518&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c00951&rft_dat=%3Cproquest_pubme%3E2538049826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538049826&rft_id=info:pmid/34096725&rfr_iscdi=true