Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes

Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-07, Vol.125 (25), p.7044-7059
Hauptverfasser: Barabash, Miraslau L, Gibby, William A. T, Guardiani, Carlo, Luchinsky, Dmitry G, Luan, Binquan, Smolyanitsky, Alex, McClintock, Peter V. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7059
container_issue 25
container_start_page 7044
container_title The journal of physical chemistry. B
container_volume 125
creator Barabash, Miraslau L
Gibby, William A. T
Guardiani, Carlo
Luchinsky, Dmitry G
Luan, Binquan
Smolyanitsky, Alex
McClintock, Peter V. E
description Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current–voltage characteristics are compared with the solution of the 1D Nernst–Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.
doi_str_mv 10.1021/acs.jpcb.1c03255
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540513089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-715dcf3a42530734a53738afccc0e96b4e8f74342e7b2fb34bc3448daa6b07503</originalsourceid><addsrcrecordid>eNpVUT1PwzAQtRCIlsLO6JGBFH_GyYKE-gFIhTLAbDmOQ1MldrATpP57DM3CcLrT3dPTe_cAuMZojhHBd0qH-b7TxRxrRAnnJ2CKOUFJLHE6zilG6QRchLBHiHCSpedgQhnGnOViCjbr2jRlsjSdsaWxPVya3aH0qq-dhcqWcNv1dasa-OxsreEqaNUZ-Kb6XYCV83BBXuGLaQuvrAmX4KxSTTBXY5-Bj_XqffGUbLaPz4uHTaIoIX0iMC91RRUjnCJBmeJU0ExVWmtk8rRgJqsEo4wYUZCqoKzQlLGsVCotkOCIzsD9kbcbitaUOur2qpGdj0r9QTpVy_8XW-_kp_uWGRE5Z1kkuBkJvPsaTOhlWwdtmia6cEOQhDPEMUVZHqG3R2j8tdy7wdvoTGIkfwOQf8sYgBwDoD_zM3kb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540513089</pqid></control><display><type>article</type><title>Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes</title><source>American Chemical Society Journals</source><creator>Barabash, Miraslau L ; Gibby, William A. T ; Guardiani, Carlo ; Luchinsky, Dmitry G ; Luan, Binquan ; Smolyanitsky, Alex ; McClintock, Peter V. E</creator><creatorcontrib>Barabash, Miraslau L ; Gibby, William A. T ; Guardiani, Carlo ; Luchinsky, Dmitry G ; Luan, Binquan ; Smolyanitsky, Alex ; McClintock, Peter V. E</creatorcontrib><description>Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current–voltage characteristics are compared with the solution of the 1D Nernst–Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c03255</identifier><identifier>PMID: 34115497</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2021-07, Vol.125 (25), p.7044-7059</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5818-7056 ; 0000-0002-9414-5379 ; 0000-0002-4378-8155 ; 0000-0003-3375-045X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c03255$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c03255$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Barabash, Miraslau L</creatorcontrib><creatorcontrib>Gibby, William A. T</creatorcontrib><creatorcontrib>Guardiani, Carlo</creatorcontrib><creatorcontrib>Luchinsky, Dmitry G</creatorcontrib><creatorcontrib>Luan, Binquan</creatorcontrib><creatorcontrib>Smolyanitsky, Alex</creatorcontrib><creatorcontrib>McClintock, Peter V. E</creatorcontrib><title>Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current–voltage characteristics are compared with the solution of the 1D Nernst–Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAQtRCIlsLO6JGBFH_GyYKE-gFIhTLAbDmOQ1MldrATpP57DM3CcLrT3dPTe_cAuMZojhHBd0qH-b7TxRxrRAnnJ2CKOUFJLHE6zilG6QRchLBHiHCSpedgQhnGnOViCjbr2jRlsjSdsaWxPVya3aH0qq-dhcqWcNv1dasa-OxsreEqaNUZ-Kb6XYCV83BBXuGLaQuvrAmX4KxSTTBXY5-Bj_XqffGUbLaPz4uHTaIoIX0iMC91RRUjnCJBmeJU0ExVWmtk8rRgJqsEo4wYUZCqoKzQlLGsVCotkOCIzsD9kbcbitaUOur2qpGdj0r9QTpVy_8XW-_kp_uWGRE5Z1kkuBkJvPsaTOhlWwdtmia6cEOQhDPEMUVZHqG3R2j8tdy7wdvoTGIkfwOQf8sYgBwDoD_zM3kb</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Barabash, Miraslau L</creator><creator>Gibby, William A. T</creator><creator>Guardiani, Carlo</creator><creator>Luchinsky, Dmitry G</creator><creator>Luan, Binquan</creator><creator>Smolyanitsky, Alex</creator><creator>McClintock, Peter V. E</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5818-7056</orcidid><orcidid>https://orcid.org/0000-0002-9414-5379</orcidid><orcidid>https://orcid.org/0000-0002-4378-8155</orcidid><orcidid>https://orcid.org/0000-0003-3375-045X</orcidid></search><sort><creationdate>20210701</creationdate><title>Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes</title><author>Barabash, Miraslau L ; Gibby, William A. T ; Guardiani, Carlo ; Luchinsky, Dmitry G ; Luan, Binquan ; Smolyanitsky, Alex ; McClintock, Peter V. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-715dcf3a42530734a53738afccc0e96b4e8f74342e7b2fb34bc3448daa6b07503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barabash, Miraslau L</creatorcontrib><creatorcontrib>Gibby, William A. T</creatorcontrib><creatorcontrib>Guardiani, Carlo</creatorcontrib><creatorcontrib>Luchinsky, Dmitry G</creatorcontrib><creatorcontrib>Luan, Binquan</creatorcontrib><creatorcontrib>Smolyanitsky, Alex</creatorcontrib><creatorcontrib>McClintock, Peter V. E</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barabash, Miraslau L</au><au>Gibby, William A. T</au><au>Guardiani, Carlo</au><au>Luchinsky, Dmitry G</au><au>Luan, Binquan</au><au>Smolyanitsky, Alex</au><au>McClintock, Peter V. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>125</volume><issue>25</issue><spage>7044</spage><epage>7059</epage><pages>7044-7059</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current–voltage characteristics are compared with the solution of the 1D Nernst–Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.</abstract><pub>American Chemical Society</pub><pmid>34115497</pmid><doi>10.1021/acs.jpcb.1c03255</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5818-7056</orcidid><orcidid>https://orcid.org/0000-0002-9414-5379</orcidid><orcidid>https://orcid.org/0000-0002-4378-8155</orcidid><orcidid>https://orcid.org/0000-0003-3375-045X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-07, Vol.125 (25), p.7044-7059
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279548
source American Chemical Society Journals
subjects B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
title Field-Dependent Dehydration and Optimal Ionic Escape Paths for C2N Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-Dependent%20Dehydration%20and%20Optimal%20Ionic%20Escape%20Paths%20for%20C2N%20Membranes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Barabash,%20Miraslau%20L&rft.date=2021-07-01&rft.volume=125&rft.issue=25&rft.spage=7044&rft.epage=7059&rft.pages=7044-7059&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c03255&rft_dat=%3Cproquest_pubme%3E2540513089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540513089&rft_id=info:pmid/34115497&rfr_iscdi=true