A primer on emerging field-deployable synthetic biology tools for global water quality monitoring
Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, “achieving universal and equitable access to safe and affordable drinking water for all”, necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthet...
Gespeichert in:
Veröffentlicht in: | npj clean water 2020-01, Vol.3 (1), Article 18 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj clean water |
container_volume | 3 |
creator | Thavarajah, Walter Verosloff, Matthew S. Jung, Jaeyoung K. Alam, Khalid K. Miller, Joshua D. Jewett, Michael C. Young, Sera L. Lucks, Julius B. |
description | Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, “achieving universal and equitable access to safe and affordable drinking water for all”, necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by isolating DNA-encoded sensing elements from nature and reassembling them to create field-deployable “biosensors” that can detect pathogenic or chemical water contaminants. Here, we describe current water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants (i.e., fecal pathogens, arsenic, and fluoride), as well as explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We conclude with an outlook on the future of biosensor development, in which we discuss their adaptability to emerging contaminants (e.g., metals, agricultural products, and pharmaceuticals), outline current limitations, and propose steps to overcome the field’s outstanding challenges to facilitate global water quality monitoring. |
doi_str_mv | 10.1038/s41545-020-0064-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386359322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-524c9a8657c371d65372bd90eaee1d668814c7be5e55ea4ff5aa28c49d5372ae3</originalsourceid><addsrcrecordid>eNp9kU1rFjEUhYMottT-AHcBN25G8zlJNkIpVoWCG12HTObONCXv5G2SUebfm-EtfoGu7r3ccx5ycxB6SckbSrh-WwSVQnaEkY6QXnT6CTpnRJpOEa6e_tafoctS7gkhjFMhJX-OzrhgvTJCnCN3hY85HCDjtGBodQ7LjKcAcexGOMa0uSECLttS76AGj4eQYpo3XFOKBU8p4zmmwUX83dVGeVhdDHXDh7SEmnKDvUDPJhcLXD7WC_T15v2X64_d7ecPn66vbjsvlKydZMIbp3upPFd07CVXbBgNAQfQxl5rKrwaQIKU4MQ0SeeY9sKMu9IBv0DvTtzjOhxg9LDU7KLdr3N5s8kF--dmCXd2Tt-sZspQThvg9SMgp4cVSrWHUDzE6BZIa7FMSma0JpQ16au_pPdpzUs7zzKhtVLS6P6_Kt720nC2s-hJ5XMqJcP088mU2D1pe0ratqTtnrTVzcNOnnLcvxjyL_K_TT8Auu6qyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386359322</pqid></control><display><type>article</type><title>A primer on emerging field-deployable synthetic biology tools for global water quality monitoring</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Thavarajah, Walter ; Verosloff, Matthew S. ; Jung, Jaeyoung K. ; Alam, Khalid K. ; Miller, Joshua D. ; Jewett, Michael C. ; Young, Sera L. ; Lucks, Julius B.</creator><creatorcontrib>Thavarajah, Walter ; Verosloff, Matthew S. ; Jung, Jaeyoung K. ; Alam, Khalid K. ; Miller, Joshua D. ; Jewett, Michael C. ; Young, Sera L. ; Lucks, Julius B.</creatorcontrib><description>Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, “achieving universal and equitable access to safe and affordable drinking water for all”, necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by isolating DNA-encoded sensing elements from nature and reassembling them to create field-deployable “biosensors” that can detect pathogenic or chemical water contaminants. Here, we describe current water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants (i.e., fecal pathogens, arsenic, and fluoride), as well as explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We conclude with an outlook on the future of biosensor development, in which we discuss their adaptability to emerging contaminants (e.g., metals, agricultural products, and pharmaceuticals), outline current limitations, and propose steps to overcome the field’s outstanding challenges to facilitate global water quality monitoring.</description><identifier>ISSN: 2059-7037</identifier><identifier>EISSN: 2059-7037</identifier><identifier>DOI: 10.1038/s41545-020-0064-8</identifier><identifier>PMID: 34267944</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/844/685 ; 706/134 ; 706/2805 ; Adaptability ; Agricultural pollution ; Agricultural products ; Aquatic Pollution ; Arsenic ; Biology ; Biosensors ; Chemical pollution ; Contaminants ; Deoxyribonucleic acid ; DNA ; Drinking water ; Earth and Environmental Science ; Environment ; Environmental monitoring ; Metals ; Nanotechnology ; Pollution monitoring ; Review Article ; Sustainable development ; Synthetic biology ; Tracking ; Waste Water Technology ; Water Industry/Water Technologies ; Water Management ; Water pollution ; Water Pollution Control ; Water quality ; Water quality management ; Water Quality/Water Pollution</subject><ispartof>npj clean water, 2020-01, Vol.3 (1), Article 18</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-524c9a8657c371d65372bd90eaee1d668814c7be5e55ea4ff5aa28c49d5372ae3</citedby><cites>FETCH-LOGICAL-c475t-524c9a8657c371d65372bd90eaee1d668814c7be5e55ea4ff5aa28c49d5372ae3</cites><orcidid>0000-0002-0619-6505 ; 0000-0002-2171-856X ; 0000-0003-2948-6211 ; 0000-0002-6122-2796 ; 0000-0002-5180-0900 ; 0000-0002-1763-1218 ; 0000-0002-4519-633X ; 0000-0002-2210-3962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41545-020-0064-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41545-020-0064-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Thavarajah, Walter</creatorcontrib><creatorcontrib>Verosloff, Matthew S.</creatorcontrib><creatorcontrib>Jung, Jaeyoung K.</creatorcontrib><creatorcontrib>Alam, Khalid K.</creatorcontrib><creatorcontrib>Miller, Joshua D.</creatorcontrib><creatorcontrib>Jewett, Michael C.</creatorcontrib><creatorcontrib>Young, Sera L.</creatorcontrib><creatorcontrib>Lucks, Julius B.</creatorcontrib><title>A primer on emerging field-deployable synthetic biology tools for global water quality monitoring</title><title>npj clean water</title><addtitle>npj Clean Water</addtitle><description>Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, “achieving universal and equitable access to safe and affordable drinking water for all”, necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by isolating DNA-encoded sensing elements from nature and reassembling them to create field-deployable “biosensors” that can detect pathogenic or chemical water contaminants. Here, we describe current water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants (i.e., fecal pathogens, arsenic, and fluoride), as well as explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We conclude with an outlook on the future of biosensor development, in which we discuss their adaptability to emerging contaminants (e.g., metals, agricultural products, and pharmaceuticals), outline current limitations, and propose steps to overcome the field’s outstanding challenges to facilitate global water quality monitoring.</description><subject>704/844/685</subject><subject>706/134</subject><subject>706/2805</subject><subject>Adaptability</subject><subject>Agricultural pollution</subject><subject>Agricultural products</subject><subject>Aquatic Pollution</subject><subject>Arsenic</subject><subject>Biology</subject><subject>Biosensors</subject><subject>Chemical pollution</subject><subject>Contaminants</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Pollution monitoring</subject><subject>Review Article</subject><subject>Sustainable development</subject><subject>Synthetic biology</subject><subject>Tracking</subject><subject>Waste Water Technology</subject><subject>Water Industry/Water Technologies</subject><subject>Water Management</subject><subject>Water pollution</subject><subject>Water Pollution Control</subject><subject>Water quality</subject><subject>Water quality management</subject><subject>Water Quality/Water Pollution</subject><issn>2059-7037</issn><issn>2059-7037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFjEUhYMottT-AHcBN25G8zlJNkIpVoWCG12HTObONCXv5G2SUebfm-EtfoGu7r3ccx5ycxB6SckbSrh-WwSVQnaEkY6QXnT6CTpnRJpOEa6e_tafoctS7gkhjFMhJX-OzrhgvTJCnCN3hY85HCDjtGBodQ7LjKcAcexGOMa0uSECLttS76AGj4eQYpo3XFOKBU8p4zmmwUX83dVGeVhdDHXDh7SEmnKDvUDPJhcLXD7WC_T15v2X64_d7ecPn66vbjsvlKydZMIbp3upPFd07CVXbBgNAQfQxl5rKrwaQIKU4MQ0SeeY9sKMu9IBv0DvTtzjOhxg9LDU7KLdr3N5s8kF--dmCXd2Tt-sZspQThvg9SMgp4cVSrWHUDzE6BZIa7FMSma0JpQ16au_pPdpzUs7zzKhtVLS6P6_Kt720nC2s-hJ5XMqJcP088mU2D1pe0ratqTtnrTVzcNOnnLcvxjyL_K_TT8Auu6qyA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Thavarajah, Walter</creator><creator>Verosloff, Matthew S.</creator><creator>Jung, Jaeyoung K.</creator><creator>Alam, Khalid K.</creator><creator>Miller, Joshua D.</creator><creator>Jewett, Michael C.</creator><creator>Young, Sera L.</creator><creator>Lucks, Julius B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0619-6505</orcidid><orcidid>https://orcid.org/0000-0002-2171-856X</orcidid><orcidid>https://orcid.org/0000-0003-2948-6211</orcidid><orcidid>https://orcid.org/0000-0002-6122-2796</orcidid><orcidid>https://orcid.org/0000-0002-5180-0900</orcidid><orcidid>https://orcid.org/0000-0002-1763-1218</orcidid><orcidid>https://orcid.org/0000-0002-4519-633X</orcidid><orcidid>https://orcid.org/0000-0002-2210-3962</orcidid></search><sort><creationdate>20200101</creationdate><title>A primer on emerging field-deployable synthetic biology tools for global water quality monitoring</title><author>Thavarajah, Walter ; Verosloff, Matthew S. ; Jung, Jaeyoung K. ; Alam, Khalid K. ; Miller, Joshua D. ; Jewett, Michael C. ; Young, Sera L. ; Lucks, Julius B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-524c9a8657c371d65372bd90eaee1d668814c7be5e55ea4ff5aa28c49d5372ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/844/685</topic><topic>706/134</topic><topic>706/2805</topic><topic>Adaptability</topic><topic>Agricultural pollution</topic><topic>Agricultural products</topic><topic>Aquatic Pollution</topic><topic>Arsenic</topic><topic>Biology</topic><topic>Biosensors</topic><topic>Chemical pollution</topic><topic>Contaminants</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Pollution monitoring</topic><topic>Review Article</topic><topic>Sustainable development</topic><topic>Synthetic biology</topic><topic>Tracking</topic><topic>Waste Water Technology</topic><topic>Water Industry/Water Technologies</topic><topic>Water Management</topic><topic>Water pollution</topic><topic>Water Pollution Control</topic><topic>Water quality</topic><topic>Water quality management</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thavarajah, Walter</creatorcontrib><creatorcontrib>Verosloff, Matthew S.</creatorcontrib><creatorcontrib>Jung, Jaeyoung K.</creatorcontrib><creatorcontrib>Alam, Khalid K.</creatorcontrib><creatorcontrib>Miller, Joshua D.</creatorcontrib><creatorcontrib>Jewett, Michael C.</creatorcontrib><creatorcontrib>Young, Sera L.</creatorcontrib><creatorcontrib>Lucks, Julius B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>npj clean water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thavarajah, Walter</au><au>Verosloff, Matthew S.</au><au>Jung, Jaeyoung K.</au><au>Alam, Khalid K.</au><au>Miller, Joshua D.</au><au>Jewett, Michael C.</au><au>Young, Sera L.</au><au>Lucks, Julius B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A primer on emerging field-deployable synthetic biology tools for global water quality monitoring</atitle><jtitle>npj clean water</jtitle><stitle>npj Clean Water</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><artnum>18</artnum><issn>2059-7037</issn><eissn>2059-7037</eissn><abstract>Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, “achieving universal and equitable access to safe and affordable drinking water for all”, necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by isolating DNA-encoded sensing elements from nature and reassembling them to create field-deployable “biosensors” that can detect pathogenic or chemical water contaminants. Here, we describe current water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants (i.e., fecal pathogens, arsenic, and fluoride), as well as explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We conclude with an outlook on the future of biosensor development, in which we discuss their adaptability to emerging contaminants (e.g., metals, agricultural products, and pharmaceuticals), outline current limitations, and propose steps to overcome the field’s outstanding challenges to facilitate global water quality monitoring.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34267944</pmid><doi>10.1038/s41545-020-0064-8</doi><orcidid>https://orcid.org/0000-0002-0619-6505</orcidid><orcidid>https://orcid.org/0000-0002-2171-856X</orcidid><orcidid>https://orcid.org/0000-0003-2948-6211</orcidid><orcidid>https://orcid.org/0000-0002-6122-2796</orcidid><orcidid>https://orcid.org/0000-0002-5180-0900</orcidid><orcidid>https://orcid.org/0000-0002-1763-1218</orcidid><orcidid>https://orcid.org/0000-0002-4519-633X</orcidid><orcidid>https://orcid.org/0000-0002-2210-3962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7037 |
ispartof | npj clean water, 2020-01, Vol.3 (1), Article 18 |
issn | 2059-7037 2059-7037 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8279131 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | 704/844/685 706/134 706/2805 Adaptability Agricultural pollution Agricultural products Aquatic Pollution Arsenic Biology Biosensors Chemical pollution Contaminants Deoxyribonucleic acid DNA Drinking water Earth and Environmental Science Environment Environmental monitoring Metals Nanotechnology Pollution monitoring Review Article Sustainable development Synthetic biology Tracking Waste Water Technology Water Industry/Water Technologies Water Management Water pollution Water Pollution Control Water quality Water quality management Water Quality/Water Pollution |
title | A primer on emerging field-deployable synthetic biology tools for global water quality monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20primer%20on%20emerging%20field-deployable%20synthetic%20biology%20tools%20for%20global%20water%20quality%20monitoring&rft.jtitle=npj%20clean%20water&rft.au=Thavarajah,%20Walter&rft.date=2020-01-01&rft.volume=3&rft.issue=1&rft.artnum=18&rft.issn=2059-7037&rft.eissn=2059-7037&rft_id=info:doi/10.1038/s41545-020-0064-8&rft_dat=%3Cproquest_pubme%3E2386359322%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386359322&rft_id=info:pmid/34267944&rfr_iscdi=true |