Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans

A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 2021-08, Vol.121, p.154803-154803, Article 154803
Hauptverfasser: Axelrod, Christopher L., Fealy, Ciaran E., Erickson, Melissa L., Davuluri, Gangarao, Fujioka, Hisashi, Dantas, Wagner S., Huang, Emily, Pergola, Kathryn, Mey, Jacob T., King, William T., Mulya, Anny, Hsia, Daniel, Burguera, Bartolome, Tandler, Bernard, Hoppel, Charles L., Kirwan, John P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154803
container_issue
container_start_page 154803
container_title Metabolism, clinical and experimental
container_volume 121
creator Axelrod, Christopher L.
Fealy, Ciaran E.
Erickson, Melissa L.
Davuluri, Gangarao
Fujioka, Hisashi
Dantas, Wagner S.
Huang, Emily
Pergola, Kathryn
Mey, Jacob T.
King, William T.
Mulya, Anny
Hsia, Daniel
Burguera, Bartolome
Tandler, Bernard
Hoppel, Charles L.
Kirwan, John P.
description A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. NCT02697201, ClinicalTrials.gov •Insulin resistance is a key pathophysiological mechanism in the development and progression of type 2 diabetes.•Mitochondrial dynamics may mediate the onset of insulin resistance by regulating excess nutrient availability•Intravenous infusion of fatty acids results in lipid accumulation within and surrounding human skeletal muscle mitochondria•Lipid accumulation triggers activation of mitochondrial fission and quality control processes•Mitochondrial respiratory function and ultrastructure remain intact despite the onset of insulin resistance.
doi_str_mv 10.1016/j.metabol.2021.154803
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026049521001037</els_id><sourcerecordid>2538048561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-e8231d74c7941f8deeb472884f612e3c107217bf4b9580a13a7b4790da089cc03</originalsourceid><addsrcrecordid>eNqFkU-P0zAQxS0EYsvCR0DykUvK2HFi5wJCK_5JlbjA2XKcCXXXsbu2U9Rvj5dWSJw4jfTmzW9G8wh5zWDLgPVvD9sFixmj33LgbMs6oaB9Qjasa3mjeoCnZAPA-wbE0N2QFzkfAEBK1T8nN62AAZSEDTnv3NFNmRpb3MkUpPkefQV7uqzZeqSLK9HuY5iSq-LscnYxUBMm-rAa78qZ2hhKip4GLL9ius-0ROrCtFqsJa_eBZowu1xM-CPR_bqYkF-SZ7PxGV9d6y358enj97svze7b5693H3aNFUKUBhVv2SSFlYNgs5oQRyG5UmLuGcfWMpCcyXEW49ApMKw1shoGmAyowVpob8m7C_e4jgtOFuu1xutjcotJZx2N0_92gtvrn_GkFZdSiqEC3lwBKT6smIteXLbovQkY16x51yoQqutZtXYXq00x54Tz3zUM9GNs-qCvsenH2PQltjr3_jKH9REnh0ln67C-a3IJbdFTdP8h_AZDRaXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538048561</pqid></control><display><type>article</type><title>Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans</title><source>Elsevier ScienceDirect Journals</source><creator>Axelrod, Christopher L. ; Fealy, Ciaran E. ; Erickson, Melissa L. ; Davuluri, Gangarao ; Fujioka, Hisashi ; Dantas, Wagner S. ; Huang, Emily ; Pergola, Kathryn ; Mey, Jacob T. ; King, William T. ; Mulya, Anny ; Hsia, Daniel ; Burguera, Bartolome ; Tandler, Bernard ; Hoppel, Charles L. ; Kirwan, John P.</creator><creatorcontrib>Axelrod, Christopher L. ; Fealy, Ciaran E. ; Erickson, Melissa L. ; Davuluri, Gangarao ; Fujioka, Hisashi ; Dantas, Wagner S. ; Huang, Emily ; Pergola, Kathryn ; Mey, Jacob T. ; King, William T. ; Mulya, Anny ; Hsia, Daniel ; Burguera, Bartolome ; Tandler, Bernard ; Hoppel, Charles L. ; Kirwan, John P.</creatorcontrib><description>A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. NCT02697201, ClinicalTrials.gov •Insulin resistance is a key pathophysiological mechanism in the development and progression of type 2 diabetes.•Mitochondrial dynamics may mediate the onset of insulin resistance by regulating excess nutrient availability•Intravenous infusion of fatty acids results in lipid accumulation within and surrounding human skeletal muscle mitochondria•Lipid accumulation triggers activation of mitochondrial fission and quality control processes•Mitochondrial respiratory function and ultrastructure remain intact despite the onset of insulin resistance.</description><identifier>ISSN: 0026-0495</identifier><identifier>EISSN: 1532-8600</identifier><identifier>DOI: 10.1016/j.metabol.2021.154803</identifier><identifier>PMID: 34090870</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Metabolism, clinical and experimental, 2021-08, Vol.121, p.154803-154803, Article 154803</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-e8231d74c7941f8deeb472884f612e3c107217bf4b9580a13a7b4790da089cc03</citedby><cites>FETCH-LOGICAL-c444t-e8231d74c7941f8deeb472884f612e3c107217bf4b9580a13a7b4790da089cc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0026049521001037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Axelrod, Christopher L.</creatorcontrib><creatorcontrib>Fealy, Ciaran E.</creatorcontrib><creatorcontrib>Erickson, Melissa L.</creatorcontrib><creatorcontrib>Davuluri, Gangarao</creatorcontrib><creatorcontrib>Fujioka, Hisashi</creatorcontrib><creatorcontrib>Dantas, Wagner S.</creatorcontrib><creatorcontrib>Huang, Emily</creatorcontrib><creatorcontrib>Pergola, Kathryn</creatorcontrib><creatorcontrib>Mey, Jacob T.</creatorcontrib><creatorcontrib>King, William T.</creatorcontrib><creatorcontrib>Mulya, Anny</creatorcontrib><creatorcontrib>Hsia, Daniel</creatorcontrib><creatorcontrib>Burguera, Bartolome</creatorcontrib><creatorcontrib>Tandler, Bernard</creatorcontrib><creatorcontrib>Hoppel, Charles L.</creatorcontrib><creatorcontrib>Kirwan, John P.</creatorcontrib><title>Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans</title><title>Metabolism, clinical and experimental</title><description>A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. NCT02697201, ClinicalTrials.gov •Insulin resistance is a key pathophysiological mechanism in the development and progression of type 2 diabetes.•Mitochondrial dynamics may mediate the onset of insulin resistance by regulating excess nutrient availability•Intravenous infusion of fatty acids results in lipid accumulation within and surrounding human skeletal muscle mitochondria•Lipid accumulation triggers activation of mitochondrial fission and quality control processes•Mitochondrial respiratory function and ultrastructure remain intact despite the onset of insulin resistance.</description><issn>0026-0495</issn><issn>1532-8600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU-P0zAQxS0EYsvCR0DykUvK2HFi5wJCK_5JlbjA2XKcCXXXsbu2U9Rvj5dWSJw4jfTmzW9G8wh5zWDLgPVvD9sFixmj33LgbMs6oaB9Qjasa3mjeoCnZAPA-wbE0N2QFzkfAEBK1T8nN62AAZSEDTnv3NFNmRpb3MkUpPkefQV7uqzZeqSLK9HuY5iSq-LscnYxUBMm-rAa78qZ2hhKip4GLL9ius-0ROrCtFqsJa_eBZowu1xM-CPR_bqYkF-SZ7PxGV9d6y358enj97svze7b5693H3aNFUKUBhVv2SSFlYNgs5oQRyG5UmLuGcfWMpCcyXEW49ApMKw1shoGmAyowVpob8m7C_e4jgtOFuu1xutjcotJZx2N0_92gtvrn_GkFZdSiqEC3lwBKT6smIteXLbovQkY16x51yoQqutZtXYXq00x54Tz3zUM9GNs-qCvsenH2PQltjr3_jKH9REnh0ln67C-a3IJbdFTdP8h_AZDRaXI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Axelrod, Christopher L.</creator><creator>Fealy, Ciaran E.</creator><creator>Erickson, Melissa L.</creator><creator>Davuluri, Gangarao</creator><creator>Fujioka, Hisashi</creator><creator>Dantas, Wagner S.</creator><creator>Huang, Emily</creator><creator>Pergola, Kathryn</creator><creator>Mey, Jacob T.</creator><creator>King, William T.</creator><creator>Mulya, Anny</creator><creator>Hsia, Daniel</creator><creator>Burguera, Bartolome</creator><creator>Tandler, Bernard</creator><creator>Hoppel, Charles L.</creator><creator>Kirwan, John P.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans</title><author>Axelrod, Christopher L. ; Fealy, Ciaran E. ; Erickson, Melissa L. ; Davuluri, Gangarao ; Fujioka, Hisashi ; Dantas, Wagner S. ; Huang, Emily ; Pergola, Kathryn ; Mey, Jacob T. ; King, William T. ; Mulya, Anny ; Hsia, Daniel ; Burguera, Bartolome ; Tandler, Bernard ; Hoppel, Charles L. ; Kirwan, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-e8231d74c7941f8deeb472884f612e3c107217bf4b9580a13a7b4790da089cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axelrod, Christopher L.</creatorcontrib><creatorcontrib>Fealy, Ciaran E.</creatorcontrib><creatorcontrib>Erickson, Melissa L.</creatorcontrib><creatorcontrib>Davuluri, Gangarao</creatorcontrib><creatorcontrib>Fujioka, Hisashi</creatorcontrib><creatorcontrib>Dantas, Wagner S.</creatorcontrib><creatorcontrib>Huang, Emily</creatorcontrib><creatorcontrib>Pergola, Kathryn</creatorcontrib><creatorcontrib>Mey, Jacob T.</creatorcontrib><creatorcontrib>King, William T.</creatorcontrib><creatorcontrib>Mulya, Anny</creatorcontrib><creatorcontrib>Hsia, Daniel</creatorcontrib><creatorcontrib>Burguera, Bartolome</creatorcontrib><creatorcontrib>Tandler, Bernard</creatorcontrib><creatorcontrib>Hoppel, Charles L.</creatorcontrib><creatorcontrib>Kirwan, John P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Metabolism, clinical and experimental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axelrod, Christopher L.</au><au>Fealy, Ciaran E.</au><au>Erickson, Melissa L.</au><au>Davuluri, Gangarao</au><au>Fujioka, Hisashi</au><au>Dantas, Wagner S.</au><au>Huang, Emily</au><au>Pergola, Kathryn</au><au>Mey, Jacob T.</au><au>King, William T.</au><au>Mulya, Anny</au><au>Hsia, Daniel</au><au>Burguera, Bartolome</au><au>Tandler, Bernard</au><au>Hoppel, Charles L.</au><au>Kirwan, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans</atitle><jtitle>Metabolism, clinical and experimental</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>121</volume><spage>154803</spage><epage>154803</epage><pages>154803-154803</pages><artnum>154803</artnum><issn>0026-0495</issn><eissn>1532-8600</eissn><abstract>A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. 19 healthy adults (age:28.4 ± 1.7 years; BMI:22.7 ± 0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. NCT02697201, ClinicalTrials.gov •Insulin resistance is a key pathophysiological mechanism in the development and progression of type 2 diabetes.•Mitochondrial dynamics may mediate the onset of insulin resistance by regulating excess nutrient availability•Intravenous infusion of fatty acids results in lipid accumulation within and surrounding human skeletal muscle mitochondria•Lipid accumulation triggers activation of mitochondrial fission and quality control processes•Mitochondrial respiratory function and ultrastructure remain intact despite the onset of insulin resistance.</abstract><pub>Elsevier Inc</pub><pmid>34090870</pmid><doi>10.1016/j.metabol.2021.154803</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-0495
ispartof Metabolism, clinical and experimental, 2021-08, Vol.121, p.154803-154803, Article 154803
issn 0026-0495
1532-8600
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277749
source Elsevier ScienceDirect Journals
title Lipids activate skeletal muscle mitochondrial fission and quality control networks to induce insulin resistance in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipids%20activate%20skeletal%20muscle%20mitochondrial%20fission%20and%20quality%20control%20networks%20to%20induce%20insulin%20resistance%20in%20humans&rft.jtitle=Metabolism,%20clinical%20and%20experimental&rft.au=Axelrod,%20Christopher%20L.&rft.date=2021-08-01&rft.volume=121&rft.spage=154803&rft.epage=154803&rft.pages=154803-154803&rft.artnum=154803&rft.issn=0026-0495&rft.eissn=1532-8600&rft_id=info:doi/10.1016/j.metabol.2021.154803&rft_dat=%3Cproquest_pubme%3E2538048561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538048561&rft_id=info:pmid/34090870&rft_els_id=S0026049521001037&rfr_iscdi=true