Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells

Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2017-06, Vol.36 (24), p.3397-3405
Hauptverfasser: van Lidth de Jeude, J F, Meijer, B J, Wielenga, M C B, Spaan, C N, Baan, B, Rosekrans, S L, Meisner, S, Shen, Y H, Lee, A S, Paton, J C, Paton, A W, Muncan, V, van den Brink, G R, Heijmans, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3405
container_issue 24
container_start_page 3397
container_title Oncogene
container_volume 36
creator van Lidth de Jeude, J F
Meijer, B J
Wielenga, M C B
Spaan, C N
Baan, B
Rosekrans, S L
Meisner, S
Shen, Y H
Lee, A S
Paton, J C
Paton, A W
Muncan, V
van den Brink, G R
Heijmans, J
description Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78 . In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.
doi_str_mv 10.1038/onc.2016.326
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495596222</galeid><sourcerecordid>A495596222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</originalsourceid><addsrcrecordid>eNp9ksFrHCEUxofS0mzT3nouQq-drTrq6KWwhDYJBHppz-I4bzYGR6fqFPLf12WTNIEQPCjf-_nJ831N85HgLcGd_BqD3VJMxLaj4lWzIawXLeeKvW42WHHcKtrRk-ZdzjcY415h-rY5ob0kSvR80-TLMK62uBhQnBCEMS7e5NlZlKA4u_p1RrkkyBkNt2gED_fseVp6WZWlSpDRbrFoXosJBblQheKC8QgWV67Bu3rMBWZkwfv8vnkzGZ_hw91-2vz-8f3X2UV79fP88mx31VrOeGmVIUxO_cSYlGJUlPB-wIDZpLg0HbeMC9tzYTomDeOdAS5BAO07QiY5mKE7bb4dfZd1mGG0EEoyXi_JzSbd6micfloJ7lrv418taU87JavB5zuDFP-stSd9E9dU-8qaCsI5VYTTlyiisBJCdVj9p_bGg3ZhivVJO7ts9Y6pOjBB6cFr-wxV1wh1JjHA5Kr-5MKX4wWbYs4Jpof2CNaHfOiaD33Ih675qPinx1_yAN8HogLtEci1FPaQHjXznOE_SdHE0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909669309</pqid></control><display><type>article</type><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</creator><creatorcontrib>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</creatorcontrib><description>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78 . In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2016.326</identifier><identifier>PMID: 27819675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/51 ; 14/63 ; 38/39 ; 38/61 ; 38/90 ; 631/532/71 ; 64/110 ; Adenomatous polyposis coli ; Adenomatous Polyposis Coli Protein - genetics ; Analysis ; Animals ; Apoptosis ; beta Catenin - metabolism ; Cell Biology ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Chemotherapy ; Clonal deletion ; Colonic Neoplasms - genetics ; Colorectal cancer ; Colorectal carcinoma ; Elongation ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelium ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Heat-Shock Proteins - genetics ; Human Genetics ; Humans ; Internal Medicine ; Intestine ; Medicine &amp; Public Health ; Mice ; Mice, Transgenic ; Mutants ; Mutation ; Oncology ; Organoids ; original-article ; Phenotypes ; Recombination ; Rodents ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Wnt protein ; Wnt Signaling Pathway ; β-Catenin</subject><ispartof>Oncogene, 2017-06, Vol.36 (24), p.3397-3405</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 15, 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</citedby><cites>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2016.326$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2016.326$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27819675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Lidth de Jeude, J F</creatorcontrib><creatorcontrib>Meijer, B J</creatorcontrib><creatorcontrib>Wielenga, M C B</creatorcontrib><creatorcontrib>Spaan, C N</creatorcontrib><creatorcontrib>Baan, B</creatorcontrib><creatorcontrib>Rosekrans, S L</creatorcontrib><creatorcontrib>Meisner, S</creatorcontrib><creatorcontrib>Shen, Y H</creatorcontrib><creatorcontrib>Lee, A S</creatorcontrib><creatorcontrib>Paton, J C</creatorcontrib><creatorcontrib>Paton, A W</creatorcontrib><creatorcontrib>Muncan, V</creatorcontrib><creatorcontrib>van den Brink, G R</creatorcontrib><creatorcontrib>Heijmans, J</creatorcontrib><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78 . In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</description><subject>13/100</subject><subject>13/106</subject><subject>13/51</subject><subject>14/63</subject><subject>38/39</subject><subject>38/61</subject><subject>38/90</subject><subject>631/532/71</subject><subject>64/110</subject><subject>Adenomatous polyposis coli</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>beta Catenin - metabolism</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Chemotherapy</subject><subject>Clonal deletion</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Elongation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Intestine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Organoids</subject><subject>original-article</subject><subject>Phenotypes</subject><subject>Recombination</subject><subject>Rodents</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>β-Catenin</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksFrHCEUxofS0mzT3nouQq-drTrq6KWwhDYJBHppz-I4bzYGR6fqFPLf12WTNIEQPCjf-_nJ831N85HgLcGd_BqD3VJMxLaj4lWzIawXLeeKvW42WHHcKtrRk-ZdzjcY415h-rY5ob0kSvR80-TLMK62uBhQnBCEMS7e5NlZlKA4u_p1RrkkyBkNt2gED_fseVp6WZWlSpDRbrFoXosJBblQheKC8QgWV67Bu3rMBWZkwfv8vnkzGZ_hw91-2vz-8f3X2UV79fP88mx31VrOeGmVIUxO_cSYlGJUlPB-wIDZpLg0HbeMC9tzYTomDeOdAS5BAO07QiY5mKE7bb4dfZd1mGG0EEoyXi_JzSbd6micfloJ7lrv418taU87JavB5zuDFP-stSd9E9dU-8qaCsI5VYTTlyiisBJCdVj9p_bGg3ZhivVJO7ts9Y6pOjBB6cFr-wxV1wh1JjHA5Kr-5MKX4wWbYs4Jpof2CNaHfOiaD33Ih675qPinx1_yAN8HogLtEci1FPaQHjXznOE_SdHE0g</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>van Lidth de Jeude, J F</creator><creator>Meijer, B J</creator><creator>Wielenga, M C B</creator><creator>Spaan, C N</creator><creator>Baan, B</creator><creator>Rosekrans, S L</creator><creator>Meisner, S</creator><creator>Shen, Y H</creator><creator>Lee, A S</creator><creator>Paton, J C</creator><creator>Paton, A W</creator><creator>Muncan, V</creator><creator>van den Brink, G R</creator><creator>Heijmans, J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20170615</creationdate><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><author>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/51</topic><topic>14/63</topic><topic>38/39</topic><topic>38/61</topic><topic>38/90</topic><topic>631/532/71</topic><topic>64/110</topic><topic>Adenomatous polyposis coli</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>beta Catenin - metabolism</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Chemotherapy</topic><topic>Clonal deletion</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Elongation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Intestine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Organoids</topic><topic>original-article</topic><topic>Phenotypes</topic><topic>Recombination</topic><topic>Rodents</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Lidth de Jeude, J F</creatorcontrib><creatorcontrib>Meijer, B J</creatorcontrib><creatorcontrib>Wielenga, M C B</creatorcontrib><creatorcontrib>Spaan, C N</creatorcontrib><creatorcontrib>Baan, B</creatorcontrib><creatorcontrib>Rosekrans, S L</creatorcontrib><creatorcontrib>Meisner, S</creatorcontrib><creatorcontrib>Shen, Y H</creatorcontrib><creatorcontrib>Lee, A S</creatorcontrib><creatorcontrib>Paton, J C</creatorcontrib><creatorcontrib>Paton, A W</creatorcontrib><creatorcontrib>Muncan, V</creatorcontrib><creatorcontrib>van den Brink, G R</creatorcontrib><creatorcontrib>Heijmans, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Lidth de Jeude, J F</au><au>Meijer, B J</au><au>Wielenga, M C B</au><au>Spaan, C N</au><au>Baan, B</au><au>Rosekrans, S L</au><au>Meisner, S</au><au>Shen, Y H</au><au>Lee, A S</au><au>Paton, J C</au><au>Paton, A W</au><au>Muncan, V</au><au>van den Brink, G R</au><au>Heijmans, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>36</volume><issue>24</issue><spage>3397</spage><epage>3405</epage><pages>3397-3405</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78 . In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27819675</pmid><doi>10.1038/onc.2016.326</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2017-06, Vol.36 (24), p.3397-3405
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272398
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 13/100
13/106
13/51
14/63
38/39
38/61
38/90
631/532/71
64/110
Adenomatous polyposis coli
Adenomatous Polyposis Coli Protein - genetics
Analysis
Animals
Apoptosis
beta Catenin - metabolism
Cell Biology
Cell Differentiation
Cell Proliferation
Cell self-renewal
Chemotherapy
Clonal deletion
Colonic Neoplasms - genetics
Colorectal cancer
Colorectal carcinoma
Elongation
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - metabolism
Epithelium
Gene Deletion
Gene Expression Regulation, Neoplastic
Heat-Shock Proteins - genetics
Human Genetics
Humans
Internal Medicine
Intestine
Medicine & Public Health
Mice
Mice, Transgenic
Mutants
Mutation
Oncology
Organoids
original-article
Phenotypes
Recombination
Rodents
Stem cell transplantation
Stem cells
Stem Cells - cytology
Stem Cells - metabolism
Wnt protein
Wnt Signaling Pathway
β-Catenin
title Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20endoplasmic%20reticulum%20stress%20by%20deletion%20of%20Grp78%20depletes%20Apc%20mutant%20intestinal%20epithelial%20stem%20cells&rft.jtitle=Oncogene&rft.au=van%20Lidth%20de%20Jeude,%20J%20F&rft.date=2017-06-15&rft.volume=36&rft.issue=24&rft.spage=3397&rft.epage=3405&rft.pages=3397-3405&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2016.326&rft_dat=%3Cgale_pubme%3EA495596222%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909669309&rft_id=info:pmid/27819675&rft_galeid=A495596222&rfr_iscdi=true