Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells
Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc , which results in hyperactivated Wnt signalling. This...
Gespeichert in:
Veröffentlicht in: | Oncogene 2017-06, Vol.36 (24), p.3397-3405 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3405 |
---|---|
container_issue | 24 |
container_start_page | 3397 |
container_title | Oncogene |
container_volume | 36 |
creator | van Lidth de Jeude, J F Meijer, B J Wielenga, M C B Spaan, C N Baan, B Rosekrans, S L Meisner, S Shen, Y H Lee, A S Paton, J C Paton, A W Muncan, V van den Brink, G R Heijmans, J |
description | Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in
Apc
, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both
Apc
and ER stress repressor chaperone
Grp78
can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of
Apc
alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of
Grp78
. In these
Apc-Grp78
double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that
Apc-Grp78
double mutant stem cells had lost self-renewal capacity. Although in
Apc-Grp78
double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of
Apc
mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations. |
doi_str_mv | 10.1038/onc.2016.326 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495596222</galeid><sourcerecordid>A495596222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</originalsourceid><addsrcrecordid>eNp9ksFrHCEUxofS0mzT3nouQq-drTrq6KWwhDYJBHppz-I4bzYGR6fqFPLf12WTNIEQPCjf-_nJ831N85HgLcGd_BqD3VJMxLaj4lWzIawXLeeKvW42WHHcKtrRk-ZdzjcY415h-rY5ob0kSvR80-TLMK62uBhQnBCEMS7e5NlZlKA4u_p1RrkkyBkNt2gED_fseVp6WZWlSpDRbrFoXosJBblQheKC8QgWV67Bu3rMBWZkwfv8vnkzGZ_hw91-2vz-8f3X2UV79fP88mx31VrOeGmVIUxO_cSYlGJUlPB-wIDZpLg0HbeMC9tzYTomDeOdAS5BAO07QiY5mKE7bb4dfZd1mGG0EEoyXi_JzSbd6micfloJ7lrv418taU87JavB5zuDFP-stSd9E9dU-8qaCsI5VYTTlyiisBJCdVj9p_bGg3ZhivVJO7ts9Y6pOjBB6cFr-wxV1wh1JjHA5Kr-5MKX4wWbYs4Jpof2CNaHfOiaD33Ih675qPinx1_yAN8HogLtEci1FPaQHjXznOE_SdHE0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909669309</pqid></control><display><type>article</type><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</creator><creatorcontrib>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</creatorcontrib><description>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in
Apc
, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both
Apc
and ER stress repressor chaperone
Grp78
can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of
Apc
alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of
Grp78
. In these
Apc-Grp78
double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that
Apc-Grp78
double mutant stem cells had lost self-renewal capacity. Although in
Apc-Grp78
double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of
Apc
mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2016.326</identifier><identifier>PMID: 27819675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/106 ; 13/51 ; 14/63 ; 38/39 ; 38/61 ; 38/90 ; 631/532/71 ; 64/110 ; Adenomatous polyposis coli ; Adenomatous Polyposis Coli Protein - genetics ; Analysis ; Animals ; Apoptosis ; beta Catenin - metabolism ; Cell Biology ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Chemotherapy ; Clonal deletion ; Colonic Neoplasms - genetics ; Colorectal cancer ; Colorectal carcinoma ; Elongation ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelium ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Heat-Shock Proteins - genetics ; Human Genetics ; Humans ; Internal Medicine ; Intestine ; Medicine & Public Health ; Mice ; Mice, Transgenic ; Mutants ; Mutation ; Oncology ; Organoids ; original-article ; Phenotypes ; Recombination ; Rodents ; Stem cell transplantation ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Wnt protein ; Wnt Signaling Pathway ; β-Catenin</subject><ispartof>Oncogene, 2017-06, Vol.36 (24), p.3397-3405</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 15, 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</citedby><cites>FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2016.326$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2016.326$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27819675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Lidth de Jeude, J F</creatorcontrib><creatorcontrib>Meijer, B J</creatorcontrib><creatorcontrib>Wielenga, M C B</creatorcontrib><creatorcontrib>Spaan, C N</creatorcontrib><creatorcontrib>Baan, B</creatorcontrib><creatorcontrib>Rosekrans, S L</creatorcontrib><creatorcontrib>Meisner, S</creatorcontrib><creatorcontrib>Shen, Y H</creatorcontrib><creatorcontrib>Lee, A S</creatorcontrib><creatorcontrib>Paton, J C</creatorcontrib><creatorcontrib>Paton, A W</creatorcontrib><creatorcontrib>Muncan, V</creatorcontrib><creatorcontrib>van den Brink, G R</creatorcontrib><creatorcontrib>Heijmans, J</creatorcontrib><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in
Apc
, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both
Apc
and ER stress repressor chaperone
Grp78
can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of
Apc
alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of
Grp78
. In these
Apc-Grp78
double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that
Apc-Grp78
double mutant stem cells had lost self-renewal capacity. Although in
Apc-Grp78
double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of
Apc
mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</description><subject>13/100</subject><subject>13/106</subject><subject>13/51</subject><subject>14/63</subject><subject>38/39</subject><subject>38/61</subject><subject>38/90</subject><subject>631/532/71</subject><subject>64/110</subject><subject>Adenomatous polyposis coli</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>beta Catenin - metabolism</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Chemotherapy</subject><subject>Clonal deletion</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Elongation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Intestine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Organoids</subject><subject>original-article</subject><subject>Phenotypes</subject><subject>Recombination</subject><subject>Rodents</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>β-Catenin</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksFrHCEUxofS0mzT3nouQq-drTrq6KWwhDYJBHppz-I4bzYGR6fqFPLf12WTNIEQPCjf-_nJ831N85HgLcGd_BqD3VJMxLaj4lWzIawXLeeKvW42WHHcKtrRk-ZdzjcY415h-rY5ob0kSvR80-TLMK62uBhQnBCEMS7e5NlZlKA4u_p1RrkkyBkNt2gED_fseVp6WZWlSpDRbrFoXosJBblQheKC8QgWV67Bu3rMBWZkwfv8vnkzGZ_hw91-2vz-8f3X2UV79fP88mx31VrOeGmVIUxO_cSYlGJUlPB-wIDZpLg0HbeMC9tzYTomDeOdAS5BAO07QiY5mKE7bb4dfZd1mGG0EEoyXi_JzSbd6micfloJ7lrv418taU87JavB5zuDFP-stSd9E9dU-8qaCsI5VYTTlyiisBJCdVj9p_bGg3ZhivVJO7ts9Y6pOjBB6cFr-wxV1wh1JjHA5Kr-5MKX4wWbYs4Jpof2CNaHfOiaD33Ih675qPinx1_yAN8HogLtEci1FPaQHjXznOE_SdHE0g</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>van Lidth de Jeude, J F</creator><creator>Meijer, B J</creator><creator>Wielenga, M C B</creator><creator>Spaan, C N</creator><creator>Baan, B</creator><creator>Rosekrans, S L</creator><creator>Meisner, S</creator><creator>Shen, Y H</creator><creator>Lee, A S</creator><creator>Paton, J C</creator><creator>Paton, A W</creator><creator>Muncan, V</creator><creator>van den Brink, G R</creator><creator>Heijmans, J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20170615</creationdate><title>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</title><author>van Lidth de Jeude, J F ; Meijer, B J ; Wielenga, M C B ; Spaan, C N ; Baan, B ; Rosekrans, S L ; Meisner, S ; Shen, Y H ; Lee, A S ; Paton, J C ; Paton, A W ; Muncan, V ; van den Brink, G R ; Heijmans, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-9a148f7f44886d92157b0e04f958a35c456c756a348a453ae58e6e27311f8bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/100</topic><topic>13/106</topic><topic>13/51</topic><topic>14/63</topic><topic>38/39</topic><topic>38/61</topic><topic>38/90</topic><topic>631/532/71</topic><topic>64/110</topic><topic>Adenomatous polyposis coli</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>beta Catenin - metabolism</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Chemotherapy</topic><topic>Clonal deletion</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Elongation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Intestine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Organoids</topic><topic>original-article</topic><topic>Phenotypes</topic><topic>Recombination</topic><topic>Rodents</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Lidth de Jeude, J F</creatorcontrib><creatorcontrib>Meijer, B J</creatorcontrib><creatorcontrib>Wielenga, M C B</creatorcontrib><creatorcontrib>Spaan, C N</creatorcontrib><creatorcontrib>Baan, B</creatorcontrib><creatorcontrib>Rosekrans, S L</creatorcontrib><creatorcontrib>Meisner, S</creatorcontrib><creatorcontrib>Shen, Y H</creatorcontrib><creatorcontrib>Lee, A S</creatorcontrib><creatorcontrib>Paton, J C</creatorcontrib><creatorcontrib>Paton, A W</creatorcontrib><creatorcontrib>Muncan, V</creatorcontrib><creatorcontrib>van den Brink, G R</creatorcontrib><creatorcontrib>Heijmans, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Lidth de Jeude, J F</au><au>Meijer, B J</au><au>Wielenga, M C B</au><au>Spaan, C N</au><au>Baan, B</au><au>Rosekrans, S L</au><au>Meisner, S</au><au>Shen, Y H</au><au>Lee, A S</au><au>Paton, J C</au><au>Paton, A W</au><au>Muncan, V</au><au>van den Brink, G R</au><au>Heijmans, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>36</volume><issue>24</issue><spage>3397</spage><epage>3405</epage><pages>3397-3405</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in
Apc
, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both
Apc
and ER stress repressor chaperone
Grp78
can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of
Apc
alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of
Grp78
. In these
Apc-Grp78
double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that
Apc-Grp78
double mutant stem cells had lost self-renewal capacity. Although in
Apc-Grp78
double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of
Apc
mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27819675</pmid><doi>10.1038/onc.2016.326</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2017-06, Vol.36 (24), p.3397-3405 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272398 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 13/100 13/106 13/51 14/63 38/39 38/61 38/90 631/532/71 64/110 Adenomatous polyposis coli Adenomatous Polyposis Coli Protein - genetics Analysis Animals Apoptosis beta Catenin - metabolism Cell Biology Cell Differentiation Cell Proliferation Cell self-renewal Chemotherapy Clonal deletion Colonic Neoplasms - genetics Colorectal cancer Colorectal carcinoma Elongation Endoplasmic reticulum Endoplasmic Reticulum Stress Epithelial cells Epithelial Cells - cytology Epithelial Cells - metabolism Epithelium Gene Deletion Gene Expression Regulation, Neoplastic Heat-Shock Proteins - genetics Human Genetics Humans Internal Medicine Intestine Medicine & Public Health Mice Mice, Transgenic Mutants Mutation Oncology Organoids original-article Phenotypes Recombination Rodents Stem cell transplantation Stem cells Stem Cells - cytology Stem Cells - metabolism Wnt protein Wnt Signaling Pathway β-Catenin |
title | Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20endoplasmic%20reticulum%20stress%20by%20deletion%20of%20Grp78%20depletes%20Apc%20mutant%20intestinal%20epithelial%20stem%20cells&rft.jtitle=Oncogene&rft.au=van%20Lidth%20de%20Jeude,%20J%20F&rft.date=2017-06-15&rft.volume=36&rft.issue=24&rft.spage=3397&rft.epage=3405&rft.pages=3397-3405&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/onc.2016.326&rft_dat=%3Cgale_pubme%3EA495596222%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909669309&rft_id=info:pmid/27819675&rft_galeid=A495596222&rfr_iscdi=true |