Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation

The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-06, Vol.13 (13), p.2134
Hauptverfasser: Paszkiewicz, Sandra, Irska, Izabela, Taraghi, Iman, Piesowicz, Elżbieta, Sieminski, Jakub, Zawisza, Karolina, Pypeć, Krzysztof, Dobrzynska, Renata, Terelak-Tymczyna, Agnieszka, Stateczny, Kamil, Szymczak, Bartłomiej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 2134
container_title Polymers
container_volume 13
creator Paszkiewicz, Sandra
Irska, Izabela
Taraghi, Iman
Piesowicz, Elżbieta
Sieminski, Jakub
Zawisza, Karolina
Pypeć, Krzysztof
Dobrzynska, Renata
Terelak-Tymczyna, Agnieszka
Stateczny, Kamil
Szymczak, Bartłomiej
description The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.
doi_str_mv 10.3390/polym13132134
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549533999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e3fe002c09fe6b715d0bc241967d476becc566b49299866faffd5a2c69611f2f3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4MottQevQe8eFmbX5t9uQjlYX2FomKf55DNTvpSsskzyRb24t_uLi3FOpcZZj58mZkvQu8p-cS5IhfHFOaRcsoZ5eIVOmWk443gkrz-pz5B56XckyVEKyXt3qITLhhRknWn6M_OhJDm4ivgbyamOvVQsIkDvvXBRGj2GUyFAV-GafTR4H32h3nISw_v5j77AV8FMwL-CdXkwcSKb-dSYcQuZbzzd4fmB-SlHk20gLemD4CvY5mCqT7Fd-iNM6HA-VM-Q7-uvuy3u-bm-9fr7eVNY7litQHugBBmiXIg-462A-ktE1TJbhCd7MHa5bReKKbURkpnnBtaw6xUklLHHD9Dnx91j1M_wmAh1myCPmY_mjzrZLx-OYn-oO_Sg96wjhGuFoGPTwI5_Z6gVD36YiGsP0pT0awVG7H-eEU__IfepynH5byVUu3inFqp5pGyOZWSwT0vQ4lezdUvzOV_AWO7mOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549533999</pqid></control><display><type>article</type><title>Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Paszkiewicz, Sandra ; Irska, Izabela ; Taraghi, Iman ; Piesowicz, Elżbieta ; Sieminski, Jakub ; Zawisza, Karolina ; Pypeć, Krzysztof ; Dobrzynska, Renata ; Terelak-Tymczyna, Agnieszka ; Stateczny, Kamil ; Szymczak, Bartłomiej</creator><creatorcontrib>Paszkiewicz, Sandra ; Irska, Izabela ; Taraghi, Iman ; Piesowicz, Elżbieta ; Sieminski, Jakub ; Zawisza, Karolina ; Pypeć, Krzysztof ; Dobrzynska, Renata ; Terelak-Tymczyna, Agnieszka ; Stateczny, Kamil ; Szymczak, Bartłomiej</creatorcontrib><description>The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym13132134</identifier><identifier>PMID: 34209627</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alumina ; Aluminum hydroxide ; Composition ; Copolymers ; Crystallization ; Differential scanning calorimetry ; Elongation ; Ethylene vinyl acetates ; Flame retardants ; Flammability ; Heat conductivity ; Hybrid systems ; Insulation ; Localization ; Low density polyethylenes ; Mechanical properties ; Melt flow index ; Morphology ; Nanocomposites ; Nanoparticles ; Nanotubes ; Polyethylene ; Polymer blends ; Polymers ; Silanes ; Tensile strength ; Thermal degradation ; Thermal stability ; Thermodynamic properties ; Thermogravimetric analysis ; Zeolites</subject><ispartof>Polymers, 2021-06, Vol.13 (13), p.2134</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e3fe002c09fe6b715d0bc241967d476becc566b49299866faffd5a2c69611f2f3</citedby><cites>FETCH-LOGICAL-c392t-e3fe002c09fe6b715d0bc241967d476becc566b49299866faffd5a2c69611f2f3</cites><orcidid>0000-0001-5469-5045 ; 0000-0002-5521-1847 ; 0000-0001-7487-9220 ; 0000-0003-4371-5236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272039/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272039/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Paszkiewicz, Sandra</creatorcontrib><creatorcontrib>Irska, Izabela</creatorcontrib><creatorcontrib>Taraghi, Iman</creatorcontrib><creatorcontrib>Piesowicz, Elżbieta</creatorcontrib><creatorcontrib>Sieminski, Jakub</creatorcontrib><creatorcontrib>Zawisza, Karolina</creatorcontrib><creatorcontrib>Pypeć, Krzysztof</creatorcontrib><creatorcontrib>Dobrzynska, Renata</creatorcontrib><creatorcontrib>Terelak-Tymczyna, Agnieszka</creatorcontrib><creatorcontrib>Stateczny, Kamil</creatorcontrib><creatorcontrib>Szymczak, Bartłomiej</creatorcontrib><title>Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation</title><title>Polymers</title><description>The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.</description><subject>Alumina</subject><subject>Aluminum hydroxide</subject><subject>Composition</subject><subject>Copolymers</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Elongation</subject><subject>Ethylene vinyl acetates</subject><subject>Flame retardants</subject><subject>Flammability</subject><subject>Heat conductivity</subject><subject>Hybrid systems</subject><subject>Insulation</subject><subject>Localization</subject><subject>Low density polyethylenes</subject><subject>Mechanical properties</subject><subject>Melt flow index</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Polyethylene</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Silanes</subject><subject>Tensile strength</subject><subject>Thermal degradation</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Zeolites</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9rFTEQx4MottQevQe8eFmbX5t9uQjlYX2FomKf55DNTvpSsskzyRb24t_uLi3FOpcZZj58mZkvQu8p-cS5IhfHFOaRcsoZ5eIVOmWk443gkrz-pz5B56XckyVEKyXt3qITLhhRknWn6M_OhJDm4ivgbyamOvVQsIkDvvXBRGj2GUyFAV-GafTR4H32h3nISw_v5j77AV8FMwL-CdXkwcSKb-dSYcQuZbzzd4fmB-SlHk20gLemD4CvY5mCqT7Fd-iNM6HA-VM-Q7-uvuy3u-bm-9fr7eVNY7litQHugBBmiXIg-462A-ktE1TJbhCd7MHa5bReKKbURkpnnBtaw6xUklLHHD9Dnx91j1M_wmAh1myCPmY_mjzrZLx-OYn-oO_Sg96wjhGuFoGPTwI5_Z6gVD36YiGsP0pT0awVG7H-eEU__IfepynH5byVUu3inFqp5pGyOZWSwT0vQ4lezdUvzOV_AWO7mOQ</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Paszkiewicz, Sandra</creator><creator>Irska, Izabela</creator><creator>Taraghi, Iman</creator><creator>Piesowicz, Elżbieta</creator><creator>Sieminski, Jakub</creator><creator>Zawisza, Karolina</creator><creator>Pypeć, Krzysztof</creator><creator>Dobrzynska, Renata</creator><creator>Terelak-Tymczyna, Agnieszka</creator><creator>Stateczny, Kamil</creator><creator>Szymczak, Bartłomiej</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5469-5045</orcidid><orcidid>https://orcid.org/0000-0002-5521-1847</orcidid><orcidid>https://orcid.org/0000-0001-7487-9220</orcidid><orcidid>https://orcid.org/0000-0003-4371-5236</orcidid></search><sort><creationdate>20210629</creationdate><title>Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation</title><author>Paszkiewicz, Sandra ; Irska, Izabela ; Taraghi, Iman ; Piesowicz, Elżbieta ; Sieminski, Jakub ; Zawisza, Karolina ; Pypeć, Krzysztof ; Dobrzynska, Renata ; Terelak-Tymczyna, Agnieszka ; Stateczny, Kamil ; Szymczak, Bartłomiej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e3fe002c09fe6b715d0bc241967d476becc566b49299866faffd5a2c69611f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alumina</topic><topic>Aluminum hydroxide</topic><topic>Composition</topic><topic>Copolymers</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Elongation</topic><topic>Ethylene vinyl acetates</topic><topic>Flame retardants</topic><topic>Flammability</topic><topic>Heat conductivity</topic><topic>Hybrid systems</topic><topic>Insulation</topic><topic>Localization</topic><topic>Low density polyethylenes</topic><topic>Mechanical properties</topic><topic>Melt flow index</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Polyethylene</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Silanes</topic><topic>Tensile strength</topic><topic>Thermal degradation</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paszkiewicz, Sandra</creatorcontrib><creatorcontrib>Irska, Izabela</creatorcontrib><creatorcontrib>Taraghi, Iman</creatorcontrib><creatorcontrib>Piesowicz, Elżbieta</creatorcontrib><creatorcontrib>Sieminski, Jakub</creatorcontrib><creatorcontrib>Zawisza, Karolina</creatorcontrib><creatorcontrib>Pypeć, Krzysztof</creatorcontrib><creatorcontrib>Dobrzynska, Renata</creatorcontrib><creatorcontrib>Terelak-Tymczyna, Agnieszka</creatorcontrib><creatorcontrib>Stateczny, Kamil</creatorcontrib><creatorcontrib>Szymczak, Bartłomiej</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paszkiewicz, Sandra</au><au>Irska, Izabela</au><au>Taraghi, Iman</au><au>Piesowicz, Elżbieta</au><au>Sieminski, Jakub</au><au>Zawisza, Karolina</au><au>Pypeć, Krzysztof</au><au>Dobrzynska, Renata</au><au>Terelak-Tymczyna, Agnieszka</au><au>Stateczny, Kamil</au><au>Szymczak, Bartłomiej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation</atitle><jtitle>Polymers</jtitle><date>2021-06-29</date><risdate>2021</risdate><volume>13</volume><issue>13</issue><spage>2134</spage><pages>2134-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The effect of the presence of halloysite nanotubes (HNTs) and silane-treated alumina trihydrate (ATH-sil) nanofillers on the mechanical, thermal, and flame retardancy properties of ethylene-vinyl acetate (EVA) copolymer/low-density polyethylene (LDPE) blends was investigated. Different weight percentages of HNT and ATH-sil nanoparticles, as well as the hybrid system of those nanofillers, were melt mixed with the polymer blend (reference sample) using a twin-screw extruder. The morphology of the nanoparticles and polymer compositions was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The mechanical properties, hardness, water absorption, and melt flow index (MFI) of the compositions were assessed. The tensile strength increases as a function of the amount of HNT nanofiller; however, the elongation at break decreases. In the case of the hybrid system of nanofillers, the compositions showed superior mechanical properties. The thermal properties of the reference sample and those of the corresponding sample with nanofiller blends were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Two peaks were observed in the melting and crystallization temperatures. This shows that the EVA/LDPE is an immiscible polymer blend. The thermal stability of the blends was improved by the presence of HNTs and ATH-sil nanoparticles. Thermal degradation temperatures were shifted to higher values by the presence of hybrid nanofillers. Finally, the flammability of the compositions was assessed. Flammability as reflected by the limiting oxygen index (OI) was increased by the presence of HNT and ATH-sil nanofiller and a hybrid system of the nanoparticles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34209627</pmid><doi>10.3390/polym13132134</doi><orcidid>https://orcid.org/0000-0001-5469-5045</orcidid><orcidid>https://orcid.org/0000-0002-5521-1847</orcidid><orcidid>https://orcid.org/0000-0001-7487-9220</orcidid><orcidid>https://orcid.org/0000-0003-4371-5236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2021-06, Vol.13 (13), p.2134
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8272039
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alumina
Aluminum hydroxide
Composition
Copolymers
Crystallization
Differential scanning calorimetry
Elongation
Ethylene vinyl acetates
Flame retardants
Flammability
Heat conductivity
Hybrid systems
Insulation
Localization
Low density polyethylenes
Mechanical properties
Melt flow index
Morphology
Nanocomposites
Nanoparticles
Nanotubes
Polyethylene
Polymer blends
Polymers
Silanes
Tensile strength
Thermal degradation
Thermal stability
Thermodynamic properties
Thermogravimetric analysis
Zeolites
title Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halloysite%20Nanotubes%20and%20Silane-Treated%20Alumina%20Trihydrate%20Hybrid%20Flame%20Retardant%20System%20for%20High-Performance%20Cable%20Insulation&rft.jtitle=Polymers&rft.au=Paszkiewicz,%20Sandra&rft.date=2021-06-29&rft.volume=13&rft.issue=13&rft.spage=2134&rft.pages=2134-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym13132134&rft_dat=%3Cproquest_pubme%3E2549533999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549533999&rft_id=info:pmid/34209627&rfr_iscdi=true