Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15
An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (27), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 27 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Cimino, Irene Kim, Hanna Tung, Y. C. Loraine Pedersen, Kent Rimmington, Debra Tadross, John A. Kohnke, Sara N. Neves-Costa, Ana Barros, André Joaquim, Stephanie Bennett, Don Melvin, Audrey Lockhart, Samuel M. Rostron, Anthony J. Scott, Jonathan Liu, Hui Burling, Keith Barker, Peter Clatworthy, Menna R. Lee, E-Chiang Simpson, A. John Yeo, Giles S. H. Moita, Luís F. Bence, Kendra K. Jørgensen, Sebastian Beck Coll, Anthony P. Breen, Danna M. O’Rahilly, Stephen |
description | An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15
−/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies. |
doi_str_mv | 10.1073/pnas.2106868118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052397</jstor_id><sourcerecordid>27052397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS0EIkOSNStQS9mw6cSPbj82SFEgASkSG7LKwqq23RmPetqN7Y4yO_6BP-RL8DDJ8Fi5rDp1dasuQq8JPiVYsLNphHRKCeaSS0LkM7QgWJGaNwo_RwuMqahlQ5sD9CqlFcZYtRK_RAesIVJIJRfo9txkfw_Zh7EKfZWXrlpuppCXMMDam5_ff0w-zz5D3JQabHQjDBU8-FR1m8o9hDs3hjlVMNrKjfbpe_XhkrRH6EUPQ3LHj-8hurn8-PXiU3395erzxfl1bVqscm1AmU60RDQKmBW0pYxaInrJBGAlLemYYiA5g-KfSmex7DtuLPRKms4odoje73SnuVs7a9yYIwx6in5dbOsAXv_bGf1S34V7LakgQsgi8O5RIIZvs0tZr30ybhhgdGUbTduGKyGY3KIn_6GrMMdyk9-UUo3knBfqbEeZGFKKrt-bIVhvg9Pb4PSf4MrE27932PNPSRXgzQ5YpRzivk8FLvdSgv0CnhChZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549948666</pqid></control><display><type>article</type><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</creator><creatorcontrib>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</creatorcontrib><description>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15
−/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106868118</identifier><identifier>PMID: 34187898</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Biomarkers ; Blocking antibodies ; Cisplatin - administration & dosage ; Cisplatin - pharmacology ; Corticosterone ; Cytokines ; E coli ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - drug effects ; Food intake ; Genotoxicity ; Glial cell line-derived neurotrophic factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism ; Glucocorticoids ; Glucocorticoids - metabolism ; Growth Differentiation Factor 15 - administration & dosage ; Growth Differentiation Factor 15 - metabolism ; Hormones ; Humans ; Hypothalamic-pituitary-adrenal axis ; Hypothalamo-Hypophyseal System - metabolism ; Hypothalamus ; Inflammation ; Lipopolysaccharides ; Mice ; Pharmacodynamics ; Pituitary ; Pituitary-Adrenal System - metabolism ; Rats ; Receptors ; Target recognition ; Toxins ; Tunicamycin - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (27), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 6, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</citedby><cites>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</cites><orcidid>0000-0001-6506-7829 ; 0000-0001-9516-7599 ; 0000-0003-0707-315X ; 0000-0002-6460-8555 ; 0000-0002-7849-3648 ; 0000-0002-3715-3970 ; 0000-0002-8424-1252 ; 0000-0003-0369-5242 ; 0000-0002-9648-0971 ; 0000-0003-1397-5408 ; 0000-0003-1362-371X ; 0000-0002-9336-1723 ; 0000-0003-4731-7294 ; 0000-0002-0109-7751 ; 0000-0002-5879-4726 ; 0000-0002-0063-9037 ; 0000-0001-9713-0191 ; 0000-0003-2199-4449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052397$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052397$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34187898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cimino, Irene</creatorcontrib><creatorcontrib>Kim, Hanna</creatorcontrib><creatorcontrib>Tung, Y. C. Loraine</creatorcontrib><creatorcontrib>Pedersen, Kent</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Tadross, John A.</creatorcontrib><creatorcontrib>Kohnke, Sara N.</creatorcontrib><creatorcontrib>Neves-Costa, Ana</creatorcontrib><creatorcontrib>Barros, André</creatorcontrib><creatorcontrib>Joaquim, Stephanie</creatorcontrib><creatorcontrib>Bennett, Don</creatorcontrib><creatorcontrib>Melvin, Audrey</creatorcontrib><creatorcontrib>Lockhart, Samuel M.</creatorcontrib><creatorcontrib>Rostron, Anthony J.</creatorcontrib><creatorcontrib>Scott, Jonathan</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Burling, Keith</creatorcontrib><creatorcontrib>Barker, Peter</creatorcontrib><creatorcontrib>Clatworthy, Menna R.</creatorcontrib><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Simpson, A. John</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><creatorcontrib>Moita, Luís F.</creatorcontrib><creatorcontrib>Bence, Kendra K.</creatorcontrib><creatorcontrib>Jørgensen, Sebastian Beck</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>Breen, Danna M.</creatorcontrib><creatorcontrib>O’Rahilly, Stephen</creatorcontrib><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15
−/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Blocking antibodies</subject><subject>Cisplatin - administration & dosage</subject><subject>Cisplatin - pharmacology</subject><subject>Corticosterone</subject><subject>Cytokines</subject><subject>E coli</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Food intake</subject><subject>Genotoxicity</subject><subject>Glial cell line-derived neurotrophic factor</subject><subject>Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - metabolism</subject><subject>Growth Differentiation Factor 15 - administration & dosage</subject><subject>Growth Differentiation Factor 15 - metabolism</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Hypothalamo-Hypophyseal System - metabolism</subject><subject>Hypothalamus</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Pharmacodynamics</subject><subject>Pituitary</subject><subject>Pituitary-Adrenal System - metabolism</subject><subject>Rats</subject><subject>Receptors</subject><subject>Target recognition</subject><subject>Toxins</subject><subject>Tunicamycin - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS0EIkOSNStQS9mw6cSPbj82SFEgASkSG7LKwqq23RmPetqN7Y4yO_6BP-RL8DDJ8Fi5rDp1dasuQq8JPiVYsLNphHRKCeaSS0LkM7QgWJGaNwo_RwuMqahlQ5sD9CqlFcZYtRK_RAesIVJIJRfo9txkfw_Zh7EKfZWXrlpuppCXMMDam5_ff0w-zz5D3JQabHQjDBU8-FR1m8o9hDs3hjlVMNrKjfbpe_XhkrRH6EUPQ3LHj-8hurn8-PXiU3395erzxfl1bVqscm1AmU60RDQKmBW0pYxaInrJBGAlLemYYiA5g-KfSmex7DtuLPRKms4odoje73SnuVs7a9yYIwx6in5dbOsAXv_bGf1S34V7LakgQsgi8O5RIIZvs0tZr30ybhhgdGUbTduGKyGY3KIn_6GrMMdyk9-UUo3knBfqbEeZGFKKrt-bIVhvg9Pb4PSf4MrE27932PNPSRXgzQ5YpRzivk8FLvdSgv0CnhChZw</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Cimino, Irene</creator><creator>Kim, Hanna</creator><creator>Tung, Y. C. Loraine</creator><creator>Pedersen, Kent</creator><creator>Rimmington, Debra</creator><creator>Tadross, John A.</creator><creator>Kohnke, Sara N.</creator><creator>Neves-Costa, Ana</creator><creator>Barros, André</creator><creator>Joaquim, Stephanie</creator><creator>Bennett, Don</creator><creator>Melvin, Audrey</creator><creator>Lockhart, Samuel M.</creator><creator>Rostron, Anthony J.</creator><creator>Scott, Jonathan</creator><creator>Liu, Hui</creator><creator>Burling, Keith</creator><creator>Barker, Peter</creator><creator>Clatworthy, Menna R.</creator><creator>Lee, E-Chiang</creator><creator>Simpson, A. John</creator><creator>Yeo, Giles S. H.</creator><creator>Moita, Luís F.</creator><creator>Bence, Kendra K.</creator><creator>Jørgensen, Sebastian Beck</creator><creator>Coll, Anthony P.</creator><creator>Breen, Danna M.</creator><creator>O’Rahilly, Stephen</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6506-7829</orcidid><orcidid>https://orcid.org/0000-0001-9516-7599</orcidid><orcidid>https://orcid.org/0000-0003-0707-315X</orcidid><orcidid>https://orcid.org/0000-0002-6460-8555</orcidid><orcidid>https://orcid.org/0000-0002-7849-3648</orcidid><orcidid>https://orcid.org/0000-0002-3715-3970</orcidid><orcidid>https://orcid.org/0000-0002-8424-1252</orcidid><orcidid>https://orcid.org/0000-0003-0369-5242</orcidid><orcidid>https://orcid.org/0000-0002-9648-0971</orcidid><orcidid>https://orcid.org/0000-0003-1397-5408</orcidid><orcidid>https://orcid.org/0000-0003-1362-371X</orcidid><orcidid>https://orcid.org/0000-0002-9336-1723</orcidid><orcidid>https://orcid.org/0000-0003-4731-7294</orcidid><orcidid>https://orcid.org/0000-0002-0109-7751</orcidid><orcidid>https://orcid.org/0000-0002-5879-4726</orcidid><orcidid>https://orcid.org/0000-0002-0063-9037</orcidid><orcidid>https://orcid.org/0000-0001-9713-0191</orcidid><orcidid>https://orcid.org/0000-0003-2199-4449</orcidid></search><sort><creationdate>20210706</creationdate><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><author>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Blocking antibodies</topic><topic>Cisplatin - administration & dosage</topic><topic>Cisplatin - pharmacology</topic><topic>Corticosterone</topic><topic>Cytokines</topic><topic>E coli</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Food intake</topic><topic>Genotoxicity</topic><topic>Glial cell line-derived neurotrophic factor</topic><topic>Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - metabolism</topic><topic>Growth Differentiation Factor 15 - administration & dosage</topic><topic>Growth Differentiation Factor 15 - metabolism</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Hypothalamo-Hypophyseal System - metabolism</topic><topic>Hypothalamus</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Pharmacodynamics</topic><topic>Pituitary</topic><topic>Pituitary-Adrenal System - metabolism</topic><topic>Rats</topic><topic>Receptors</topic><topic>Target recognition</topic><topic>Toxins</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cimino, Irene</creatorcontrib><creatorcontrib>Kim, Hanna</creatorcontrib><creatorcontrib>Tung, Y. C. Loraine</creatorcontrib><creatorcontrib>Pedersen, Kent</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Tadross, John A.</creatorcontrib><creatorcontrib>Kohnke, Sara N.</creatorcontrib><creatorcontrib>Neves-Costa, Ana</creatorcontrib><creatorcontrib>Barros, André</creatorcontrib><creatorcontrib>Joaquim, Stephanie</creatorcontrib><creatorcontrib>Bennett, Don</creatorcontrib><creatorcontrib>Melvin, Audrey</creatorcontrib><creatorcontrib>Lockhart, Samuel M.</creatorcontrib><creatorcontrib>Rostron, Anthony J.</creatorcontrib><creatorcontrib>Scott, Jonathan</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Burling, Keith</creatorcontrib><creatorcontrib>Barker, Peter</creatorcontrib><creatorcontrib>Clatworthy, Menna R.</creatorcontrib><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Simpson, A. John</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><creatorcontrib>Moita, Luís F.</creatorcontrib><creatorcontrib>Bence, Kendra K.</creatorcontrib><creatorcontrib>Jørgensen, Sebastian Beck</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>Breen, Danna M.</creatorcontrib><creatorcontrib>O’Rahilly, Stephen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cimino, Irene</au><au>Kim, Hanna</au><au>Tung, Y. C. Loraine</au><au>Pedersen, Kent</au><au>Rimmington, Debra</au><au>Tadross, John A.</au><au>Kohnke, Sara N.</au><au>Neves-Costa, Ana</au><au>Barros, André</au><au>Joaquim, Stephanie</au><au>Bennett, Don</au><au>Melvin, Audrey</au><au>Lockhart, Samuel M.</au><au>Rostron, Anthony J.</au><au>Scott, Jonathan</au><au>Liu, Hui</au><au>Burling, Keith</au><au>Barker, Peter</au><au>Clatworthy, Menna R.</au><au>Lee, E-Chiang</au><au>Simpson, A. John</au><au>Yeo, Giles S. H.</au><au>Moita, Luís F.</au><au>Bence, Kendra K.</au><au>Jørgensen, Sebastian Beck</au><au>Coll, Anthony P.</au><au>Breen, Danna M.</au><au>O’Rahilly, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>118</volume><issue>27</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15
−/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34187898</pmid><doi>10.1073/pnas.2106868118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6506-7829</orcidid><orcidid>https://orcid.org/0000-0001-9516-7599</orcidid><orcidid>https://orcid.org/0000-0003-0707-315X</orcidid><orcidid>https://orcid.org/0000-0002-6460-8555</orcidid><orcidid>https://orcid.org/0000-0002-7849-3648</orcidid><orcidid>https://orcid.org/0000-0002-3715-3970</orcidid><orcidid>https://orcid.org/0000-0002-8424-1252</orcidid><orcidid>https://orcid.org/0000-0003-0369-5242</orcidid><orcidid>https://orcid.org/0000-0002-9648-0971</orcidid><orcidid>https://orcid.org/0000-0003-1397-5408</orcidid><orcidid>https://orcid.org/0000-0003-1362-371X</orcidid><orcidid>https://orcid.org/0000-0002-9336-1723</orcidid><orcidid>https://orcid.org/0000-0003-4731-7294</orcidid><orcidid>https://orcid.org/0000-0002-0109-7751</orcidid><orcidid>https://orcid.org/0000-0002-5879-4726</orcidid><orcidid>https://orcid.org/0000-0002-0063-9037</orcidid><orcidid>https://orcid.org/0000-0001-9713-0191</orcidid><orcidid>https://orcid.org/0000-0003-2199-4449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (27), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271778 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Animals Antibodies Biological Sciences Biomarkers Blocking antibodies Cisplatin - administration & dosage Cisplatin - pharmacology Corticosterone Cytokines E coli Endoplasmic reticulum Endoplasmic Reticulum Stress - drug effects Food intake Genotoxicity Glial cell line-derived neurotrophic factor Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism Glucocorticoids Glucocorticoids - metabolism Growth Differentiation Factor 15 - administration & dosage Growth Differentiation Factor 15 - metabolism Hormones Humans Hypothalamic-pituitary-adrenal axis Hypothalamo-Hypophyseal System - metabolism Hypothalamus Inflammation Lipopolysaccharides Mice Pharmacodynamics Pituitary Pituitary-Adrenal System - metabolism Rats Receptors Target recognition Toxins Tunicamycin - pharmacology |
title | Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20the%20hypothalamic%E2%80%93pituitary%E2%80%93adrenal%20axis%20by%20exogenous%20and%20endogenous%20GDF15&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cimino,%20Irene&rft.date=2021-07-06&rft.volume=118&rft.issue=27&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106868118&rft_dat=%3Cjstor_pubme%3E27052397%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549948666&rft_id=info:pmid/34187898&rft_jstor_id=27052397&rfr_iscdi=true |