Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15

An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-07, Vol.118 (27), p.1-10
Hauptverfasser: Cimino, Irene, Kim, Hanna, Tung, Y. C. Loraine, Pedersen, Kent, Rimmington, Debra, Tadross, John A., Kohnke, Sara N., Neves-Costa, Ana, Barros, André, Joaquim, Stephanie, Bennett, Don, Melvin, Audrey, Lockhart, Samuel M., Rostron, Anthony J., Scott, Jonathan, Liu, Hui, Burling, Keith, Barker, Peter, Clatworthy, Menna R., Lee, E-Chiang, Simpson, A. John, Yeo, Giles S. H., Moita, Luís F., Bence, Kendra K., Jørgensen, Sebastian Beck, Coll, Anthony P., Breen, Danna M., O’Rahilly, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 27
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Cimino, Irene
Kim, Hanna
Tung, Y. C. Loraine
Pedersen, Kent
Rimmington, Debra
Tadross, John A.
Kohnke, Sara N.
Neves-Costa, Ana
Barros, André
Joaquim, Stephanie
Bennett, Don
Melvin, Audrey
Lockhart, Samuel M.
Rostron, Anthony J.
Scott, Jonathan
Liu, Hui
Burling, Keith
Barker, Peter
Clatworthy, Menna R.
Lee, E-Chiang
Simpson, A. John
Yeo, Giles S. H.
Moita, Luís F.
Bence, Kendra K.
Jørgensen, Sebastian Beck
Coll, Anthony P.
Breen, Danna M.
O’Rahilly, Stephen
description An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 −/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.
doi_str_mv 10.1073/pnas.2106868118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27052397</jstor_id><sourcerecordid>27052397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS0EIkOSNStQS9mw6cSPbj82SFEgASkSG7LKwqq23RmPetqN7Y4yO_6BP-RL8DDJ8Fi5rDp1dasuQq8JPiVYsLNphHRKCeaSS0LkM7QgWJGaNwo_RwuMqahlQ5sD9CqlFcZYtRK_RAesIVJIJRfo9txkfw_Zh7EKfZWXrlpuppCXMMDam5_ff0w-zz5D3JQabHQjDBU8-FR1m8o9hDs3hjlVMNrKjfbpe_XhkrRH6EUPQ3LHj-8hurn8-PXiU3395erzxfl1bVqscm1AmU60RDQKmBW0pYxaInrJBGAlLemYYiA5g-KfSmex7DtuLPRKms4odoje73SnuVs7a9yYIwx6in5dbOsAXv_bGf1S34V7LakgQsgi8O5RIIZvs0tZr30ybhhgdGUbTduGKyGY3KIn_6GrMMdyk9-UUo3knBfqbEeZGFKKrt-bIVhvg9Pb4PSf4MrE27932PNPSRXgzQ5YpRzivk8FLvdSgv0CnhChZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549948666</pqid></control><display><type>article</type><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</creator><creatorcontrib>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</creatorcontrib><description>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 −/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2106868118</identifier><identifier>PMID: 34187898</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Biomarkers ; Blocking antibodies ; Cisplatin - administration &amp; dosage ; Cisplatin - pharmacology ; Corticosterone ; Cytokines ; E coli ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - drug effects ; Food intake ; Genotoxicity ; Glial cell line-derived neurotrophic factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism ; Glucocorticoids ; Glucocorticoids - metabolism ; Growth Differentiation Factor 15 - administration &amp; dosage ; Growth Differentiation Factor 15 - metabolism ; Hormones ; Humans ; Hypothalamic-pituitary-adrenal axis ; Hypothalamo-Hypophyseal System - metabolism ; Hypothalamus ; Inflammation ; Lipopolysaccharides ; Mice ; Pharmacodynamics ; Pituitary ; Pituitary-Adrenal System - metabolism ; Rats ; Receptors ; Target recognition ; Toxins ; Tunicamycin - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (27), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jul 6, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</citedby><cites>FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</cites><orcidid>0000-0001-6506-7829 ; 0000-0001-9516-7599 ; 0000-0003-0707-315X ; 0000-0002-6460-8555 ; 0000-0002-7849-3648 ; 0000-0002-3715-3970 ; 0000-0002-8424-1252 ; 0000-0003-0369-5242 ; 0000-0002-9648-0971 ; 0000-0003-1397-5408 ; 0000-0003-1362-371X ; 0000-0002-9336-1723 ; 0000-0003-4731-7294 ; 0000-0002-0109-7751 ; 0000-0002-5879-4726 ; 0000-0002-0063-9037 ; 0000-0001-9713-0191 ; 0000-0003-2199-4449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27052397$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27052397$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34187898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cimino, Irene</creatorcontrib><creatorcontrib>Kim, Hanna</creatorcontrib><creatorcontrib>Tung, Y. C. Loraine</creatorcontrib><creatorcontrib>Pedersen, Kent</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Tadross, John A.</creatorcontrib><creatorcontrib>Kohnke, Sara N.</creatorcontrib><creatorcontrib>Neves-Costa, Ana</creatorcontrib><creatorcontrib>Barros, André</creatorcontrib><creatorcontrib>Joaquim, Stephanie</creatorcontrib><creatorcontrib>Bennett, Don</creatorcontrib><creatorcontrib>Melvin, Audrey</creatorcontrib><creatorcontrib>Lockhart, Samuel M.</creatorcontrib><creatorcontrib>Rostron, Anthony J.</creatorcontrib><creatorcontrib>Scott, Jonathan</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Burling, Keith</creatorcontrib><creatorcontrib>Barker, Peter</creatorcontrib><creatorcontrib>Clatworthy, Menna R.</creatorcontrib><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Simpson, A. John</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><creatorcontrib>Moita, Luís F.</creatorcontrib><creatorcontrib>Bence, Kendra K.</creatorcontrib><creatorcontrib>Jørgensen, Sebastian Beck</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>Breen, Danna M.</creatorcontrib><creatorcontrib>O’Rahilly, Stephen</creatorcontrib><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 −/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Biomarkers</subject><subject>Blocking antibodies</subject><subject>Cisplatin - administration &amp; dosage</subject><subject>Cisplatin - pharmacology</subject><subject>Corticosterone</subject><subject>Cytokines</subject><subject>E coli</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Food intake</subject><subject>Genotoxicity</subject><subject>Glial cell line-derived neurotrophic factor</subject><subject>Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - metabolism</subject><subject>Growth Differentiation Factor 15 - administration &amp; dosage</subject><subject>Growth Differentiation Factor 15 - metabolism</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Hypothalamo-Hypophyseal System - metabolism</subject><subject>Hypothalamus</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Pharmacodynamics</subject><subject>Pituitary</subject><subject>Pituitary-Adrenal System - metabolism</subject><subject>Rats</subject><subject>Receptors</subject><subject>Target recognition</subject><subject>Toxins</subject><subject>Tunicamycin - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS0EIkOSNStQS9mw6cSPbj82SFEgASkSG7LKwqq23RmPetqN7Y4yO_6BP-RL8DDJ8Fi5rDp1dasuQq8JPiVYsLNphHRKCeaSS0LkM7QgWJGaNwo_RwuMqahlQ5sD9CqlFcZYtRK_RAesIVJIJRfo9txkfw_Zh7EKfZWXrlpuppCXMMDam5_ff0w-zz5D3JQabHQjDBU8-FR1m8o9hDs3hjlVMNrKjfbpe_XhkrRH6EUPQ3LHj-8hurn8-PXiU3395erzxfl1bVqscm1AmU60RDQKmBW0pYxaInrJBGAlLemYYiA5g-KfSmex7DtuLPRKms4odoje73SnuVs7a9yYIwx6in5dbOsAXv_bGf1S34V7LakgQsgi8O5RIIZvs0tZr30ybhhgdGUbTduGKyGY3KIn_6GrMMdyk9-UUo3knBfqbEeZGFKKrt-bIVhvg9Pb4PSf4MrE27932PNPSRXgzQ5YpRzivk8FLvdSgv0CnhChZw</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Cimino, Irene</creator><creator>Kim, Hanna</creator><creator>Tung, Y. C. Loraine</creator><creator>Pedersen, Kent</creator><creator>Rimmington, Debra</creator><creator>Tadross, John A.</creator><creator>Kohnke, Sara N.</creator><creator>Neves-Costa, Ana</creator><creator>Barros, André</creator><creator>Joaquim, Stephanie</creator><creator>Bennett, Don</creator><creator>Melvin, Audrey</creator><creator>Lockhart, Samuel M.</creator><creator>Rostron, Anthony J.</creator><creator>Scott, Jonathan</creator><creator>Liu, Hui</creator><creator>Burling, Keith</creator><creator>Barker, Peter</creator><creator>Clatworthy, Menna R.</creator><creator>Lee, E-Chiang</creator><creator>Simpson, A. John</creator><creator>Yeo, Giles S. H.</creator><creator>Moita, Luís F.</creator><creator>Bence, Kendra K.</creator><creator>Jørgensen, Sebastian Beck</creator><creator>Coll, Anthony P.</creator><creator>Breen, Danna M.</creator><creator>O’Rahilly, Stephen</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6506-7829</orcidid><orcidid>https://orcid.org/0000-0001-9516-7599</orcidid><orcidid>https://orcid.org/0000-0003-0707-315X</orcidid><orcidid>https://orcid.org/0000-0002-6460-8555</orcidid><orcidid>https://orcid.org/0000-0002-7849-3648</orcidid><orcidid>https://orcid.org/0000-0002-3715-3970</orcidid><orcidid>https://orcid.org/0000-0002-8424-1252</orcidid><orcidid>https://orcid.org/0000-0003-0369-5242</orcidid><orcidid>https://orcid.org/0000-0002-9648-0971</orcidid><orcidid>https://orcid.org/0000-0003-1397-5408</orcidid><orcidid>https://orcid.org/0000-0003-1362-371X</orcidid><orcidid>https://orcid.org/0000-0002-9336-1723</orcidid><orcidid>https://orcid.org/0000-0003-4731-7294</orcidid><orcidid>https://orcid.org/0000-0002-0109-7751</orcidid><orcidid>https://orcid.org/0000-0002-5879-4726</orcidid><orcidid>https://orcid.org/0000-0002-0063-9037</orcidid><orcidid>https://orcid.org/0000-0001-9713-0191</orcidid><orcidid>https://orcid.org/0000-0003-2199-4449</orcidid></search><sort><creationdate>20210706</creationdate><title>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</title><author>Cimino, Irene ; Kim, Hanna ; Tung, Y. C. Loraine ; Pedersen, Kent ; Rimmington, Debra ; Tadross, John A. ; Kohnke, Sara N. ; Neves-Costa, Ana ; Barros, André ; Joaquim, Stephanie ; Bennett, Don ; Melvin, Audrey ; Lockhart, Samuel M. ; Rostron, Anthony J. ; Scott, Jonathan ; Liu, Hui ; Burling, Keith ; Barker, Peter ; Clatworthy, Menna R. ; Lee, E-Chiang ; Simpson, A. John ; Yeo, Giles S. H. ; Moita, Luís F. ; Bence, Kendra K. ; Jørgensen, Sebastian Beck ; Coll, Anthony P. ; Breen, Danna M. ; O’Rahilly, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ca9cb751749a3d725232d17f837a098d1b393a863a00928ed08fb6cdaf98cbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Biomarkers</topic><topic>Blocking antibodies</topic><topic>Cisplatin - administration &amp; dosage</topic><topic>Cisplatin - pharmacology</topic><topic>Corticosterone</topic><topic>Cytokines</topic><topic>E coli</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Food intake</topic><topic>Genotoxicity</topic><topic>Glial cell line-derived neurotrophic factor</topic><topic>Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - metabolism</topic><topic>Growth Differentiation Factor 15 - administration &amp; dosage</topic><topic>Growth Differentiation Factor 15 - metabolism</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Hypothalamo-Hypophyseal System - metabolism</topic><topic>Hypothalamus</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Pharmacodynamics</topic><topic>Pituitary</topic><topic>Pituitary-Adrenal System - metabolism</topic><topic>Rats</topic><topic>Receptors</topic><topic>Target recognition</topic><topic>Toxins</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cimino, Irene</creatorcontrib><creatorcontrib>Kim, Hanna</creatorcontrib><creatorcontrib>Tung, Y. C. Loraine</creatorcontrib><creatorcontrib>Pedersen, Kent</creatorcontrib><creatorcontrib>Rimmington, Debra</creatorcontrib><creatorcontrib>Tadross, John A.</creatorcontrib><creatorcontrib>Kohnke, Sara N.</creatorcontrib><creatorcontrib>Neves-Costa, Ana</creatorcontrib><creatorcontrib>Barros, André</creatorcontrib><creatorcontrib>Joaquim, Stephanie</creatorcontrib><creatorcontrib>Bennett, Don</creatorcontrib><creatorcontrib>Melvin, Audrey</creatorcontrib><creatorcontrib>Lockhart, Samuel M.</creatorcontrib><creatorcontrib>Rostron, Anthony J.</creatorcontrib><creatorcontrib>Scott, Jonathan</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Burling, Keith</creatorcontrib><creatorcontrib>Barker, Peter</creatorcontrib><creatorcontrib>Clatworthy, Menna R.</creatorcontrib><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Simpson, A. John</creatorcontrib><creatorcontrib>Yeo, Giles S. H.</creatorcontrib><creatorcontrib>Moita, Luís F.</creatorcontrib><creatorcontrib>Bence, Kendra K.</creatorcontrib><creatorcontrib>Jørgensen, Sebastian Beck</creatorcontrib><creatorcontrib>Coll, Anthony P.</creatorcontrib><creatorcontrib>Breen, Danna M.</creatorcontrib><creatorcontrib>O’Rahilly, Stephen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cimino, Irene</au><au>Kim, Hanna</au><au>Tung, Y. C. Loraine</au><au>Pedersen, Kent</au><au>Rimmington, Debra</au><au>Tadross, John A.</au><au>Kohnke, Sara N.</au><au>Neves-Costa, Ana</au><au>Barros, André</au><au>Joaquim, Stephanie</au><au>Bennett, Don</au><au>Melvin, Audrey</au><au>Lockhart, Samuel M.</au><au>Rostron, Anthony J.</au><au>Scott, Jonathan</au><au>Liu, Hui</au><au>Burling, Keith</au><au>Barker, Peter</au><au>Clatworthy, Menna R.</au><au>Lee, E-Chiang</au><au>Simpson, A. John</au><au>Yeo, Giles S. H.</au><au>Moita, Luís F.</au><au>Bence, Kendra K.</au><au>Jørgensen, Sebastian Beck</au><au>Coll, Anthony P.</au><au>Breen, Danna M.</au><au>O’Rahilly, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>118</volume><issue>27</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>An acute increase in the circulating concentration of glucocorticoid hormones is essential for the survival of severe somatic stresses. Circulating concentrations of GDF15, a hormone that acts in the brain to reduce food intake, are frequently elevated in stressful states. We now report that GDF15 potently activates the hypothalamic–pituitary–adrenal (HPA) axis in mice and rats. A blocking antibody to the GDNF-family receptor α-like receptor completely prevented the corticosterone response to GDF15 administration. In wild-type mice exposed to a range of stressful stimuli, circulating levels of both corticosterone and GDF15 rose acutely. In the case of Escherichia coli or lipopolysaccharide injections, the vigorous proinflammatory cytokine response elicited was sufficient to produce a near-maximal HPA response, regardless of the presence or absence of GDF15. In contrast, the activation of the HPA axis seen in wild-type mice in response to the administration of genotoxic or endoplasmic reticulum toxins, which do not provoke a marked rise in cytokines, was absent in Gdf15 −/− mice. In conclusion, consistent with its proposed role as a sentinel hormone, endogenous GDF15 is required for the activation of the protective HPA response to toxins that do not induce a substantial cytokine response. In the context of efforts to develop GDF15 as an antiobesity therapeutic, these findings identify a biomarker of target engagement and a previously unrecognized pharmacodynamic effect, which will require monitoring in human studies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34187898</pmid><doi>10.1073/pnas.2106868118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6506-7829</orcidid><orcidid>https://orcid.org/0000-0001-9516-7599</orcidid><orcidid>https://orcid.org/0000-0003-0707-315X</orcidid><orcidid>https://orcid.org/0000-0002-6460-8555</orcidid><orcidid>https://orcid.org/0000-0002-7849-3648</orcidid><orcidid>https://orcid.org/0000-0002-3715-3970</orcidid><orcidid>https://orcid.org/0000-0002-8424-1252</orcidid><orcidid>https://orcid.org/0000-0003-0369-5242</orcidid><orcidid>https://orcid.org/0000-0002-9648-0971</orcidid><orcidid>https://orcid.org/0000-0003-1397-5408</orcidid><orcidid>https://orcid.org/0000-0003-1362-371X</orcidid><orcidid>https://orcid.org/0000-0002-9336-1723</orcidid><orcidid>https://orcid.org/0000-0003-4731-7294</orcidid><orcidid>https://orcid.org/0000-0002-0109-7751</orcidid><orcidid>https://orcid.org/0000-0002-5879-4726</orcidid><orcidid>https://orcid.org/0000-0002-0063-9037</orcidid><orcidid>https://orcid.org/0000-0001-9713-0191</orcidid><orcidid>https://orcid.org/0000-0003-2199-4449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-07, Vol.118 (27), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8271778
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animals
Antibodies
Biological Sciences
Biomarkers
Blocking antibodies
Cisplatin - administration & dosage
Cisplatin - pharmacology
Corticosterone
Cytokines
E coli
Endoplasmic reticulum
Endoplasmic Reticulum Stress - drug effects
Food intake
Genotoxicity
Glial cell line-derived neurotrophic factor
Glial Cell Line-Derived Neurotrophic Factor Receptors - metabolism
Glucocorticoids
Glucocorticoids - metabolism
Growth Differentiation Factor 15 - administration & dosage
Growth Differentiation Factor 15 - metabolism
Hormones
Humans
Hypothalamic-pituitary-adrenal axis
Hypothalamo-Hypophyseal System - metabolism
Hypothalamus
Inflammation
Lipopolysaccharides
Mice
Pharmacodynamics
Pituitary
Pituitary-Adrenal System - metabolism
Rats
Receptors
Target recognition
Toxins
Tunicamycin - pharmacology
title Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20the%20hypothalamic%E2%80%93pituitary%E2%80%93adrenal%20axis%20by%20exogenous%20and%20endogenous%20GDF15&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cimino,%20Irene&rft.date=2021-07-06&rft.volume=118&rft.issue=27&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2106868118&rft_dat=%3Cjstor_pubme%3E27052397%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549948666&rft_id=info:pmid/34187898&rft_jstor_id=27052397&rfr_iscdi=true