Brain glycogen serves as a critical glucosamine cache required for protein glycosylation

Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogeno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2021-07, Vol.33 (7), p.1404-1417.e9
Hauptverfasser: Sun, Ramon C., Young, Lyndsay E.A., Bruntz, Ronald C., Markussen, Kia H., Zhou, Zhengqiu, Conroy, Lindsey R., Hawkinson, Tara R., Clarke, Harrison A., Stanback, Alexandra E., Macedo, Jessica K.A., Emanuelle, Shane, Brewer, M. Kathryn, Rondon, Alberto L., Mestas, Annette, Sanders, William C., Mahalingan, Krishna K., Tang, Buyun, Chikwana, Vimbai M., Segvich, Dyann M., Contreras, Christopher J., Allenger, Elizabeth J., Brainson, Christine F., Johnson, Lance A., Taylor, Richard E., Armstrong, Dustin D., Shaffer, Robert, Waechter, Charles J., Vander Kooi, Craig W., DePaoli-Roach, Anna A., Roach, Peter J., Hurley, Thomas D., Drake, Richard R., Gentry, Matthew S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1417.e9
container_issue 7
container_start_page 1404
container_title Cell metabolism
container_volume 33
creator Sun, Ramon C.
Young, Lyndsay E.A.
Bruntz, Ronald C.
Markussen, Kia H.
Zhou, Zhengqiu
Conroy, Lindsey R.
Hawkinson, Tara R.
Clarke, Harrison A.
Stanback, Alexandra E.
Macedo, Jessica K.A.
Emanuelle, Shane
Brewer, M. Kathryn
Rondon, Alberto L.
Mestas, Annette
Sanders, William C.
Mahalingan, Krishna K.
Tang, Buyun
Chikwana, Vimbai M.
Segvich, Dyann M.
Contreras, Christopher J.
Allenger, Elizabeth J.
Brainson, Christine F.
Johnson, Lance A.
Taylor, Richard E.
Armstrong, Dustin D.
Shaffer, Robert
Waechter, Charles J.
Vander Kooi, Craig W.
DePaoli-Roach, Anna A.
Roach, Peter J.
Hurley, Thomas D.
Drake, Richard R.
Gentry, Matthew S.
description Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system. [Display omitted] •Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.
doi_str_mv 10.1016/j.cmet.2021.05.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8266748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413121002205</els_id><sourcerecordid>2534612679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</originalsourceid><addsrcrecordid>eNp9kd1L5DAUxYO4-P0P-CB99KU1352CCCq7uiDsyy74FtLb25kMbTMm7cD892YYR_RlIZDA-d1zwzmEXDJaMMr0zbKAHseCU84KqgpKxQE5YZXgeSk5PUxvpWgumWDH5DTGZQK0qMQRORaSSlFJfkJeH4J1QzbvNuDnOGQRwxpjZtPJILjRge2SOoGPtncDZmBhgVnAt8kFbLLWh2wV_Ih7k7jp7Oj8cE5-tLaLePFxn5F_v37-fXzOX_48_X68f8lBKjXm7UxRWXFUNZuVZWVVA5ZV0toWsaYNMODMItNMVq1ObN00NTbAW4qy1liLM3K3811NdZ8UHMZgO7MKrrdhY7x15rsyuIWZ-7WZca1LOUsG1x8Gwb9NGEfTuwjYdXZAP0XDlZCacV1WCeU7FIKPMWD7uYZRs63ELM22ErOtxFBlUuJp6OrrBz9H9h0k4HYHYIpp7TCYCA4HwCYlDKNpvPuf_zsNv6C0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534612679</pqid></control><display><type>article</type><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</creator><creatorcontrib>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</creatorcontrib><description>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system. [Display omitted] •Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2021.05.003</identifier><identifier>PMID: 34043942</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; antibody-enzyme therapy ; Brain - metabolism ; Cells, Cultured ; childhood dementia ; Disease Models, Animal ; Female ; glucosamine ; Glucosamine - metabolism ; Glycogen - metabolism ; Glycogen - physiology ; glycogen storage disease ; Glycogen Synthase - genetics ; Glycogen Synthase - metabolism ; Glycogenolysis - genetics ; Glycosylation ; Lafora disease ; Lafora Disease - genetics ; Lafora Disease - metabolism ; Lafora Disease - pathology ; MALDI imaging ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; N-linked glycosylation ; polyglucosan body ; Protein Processing, Post-Translational - genetics</subject><ispartof>Cell metabolism, 2021-07, Vol.33 (7), p.1404-1417.e9</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</citedby><cites>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmet.2021.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34043942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Ramon C.</creatorcontrib><creatorcontrib>Young, Lyndsay E.A.</creatorcontrib><creatorcontrib>Bruntz, Ronald C.</creatorcontrib><creatorcontrib>Markussen, Kia H.</creatorcontrib><creatorcontrib>Zhou, Zhengqiu</creatorcontrib><creatorcontrib>Conroy, Lindsey R.</creatorcontrib><creatorcontrib>Hawkinson, Tara R.</creatorcontrib><creatorcontrib>Clarke, Harrison A.</creatorcontrib><creatorcontrib>Stanback, Alexandra E.</creatorcontrib><creatorcontrib>Macedo, Jessica K.A.</creatorcontrib><creatorcontrib>Emanuelle, Shane</creatorcontrib><creatorcontrib>Brewer, M. Kathryn</creatorcontrib><creatorcontrib>Rondon, Alberto L.</creatorcontrib><creatorcontrib>Mestas, Annette</creatorcontrib><creatorcontrib>Sanders, William C.</creatorcontrib><creatorcontrib>Mahalingan, Krishna K.</creatorcontrib><creatorcontrib>Tang, Buyun</creatorcontrib><creatorcontrib>Chikwana, Vimbai M.</creatorcontrib><creatorcontrib>Segvich, Dyann M.</creatorcontrib><creatorcontrib>Contreras, Christopher J.</creatorcontrib><creatorcontrib>Allenger, Elizabeth J.</creatorcontrib><creatorcontrib>Brainson, Christine F.</creatorcontrib><creatorcontrib>Johnson, Lance A.</creatorcontrib><creatorcontrib>Taylor, Richard E.</creatorcontrib><creatorcontrib>Armstrong, Dustin D.</creatorcontrib><creatorcontrib>Shaffer, Robert</creatorcontrib><creatorcontrib>Waechter, Charles J.</creatorcontrib><creatorcontrib>Vander Kooi, Craig W.</creatorcontrib><creatorcontrib>DePaoli-Roach, Anna A.</creatorcontrib><creatorcontrib>Roach, Peter J.</creatorcontrib><creatorcontrib>Hurley, Thomas D.</creatorcontrib><creatorcontrib>Drake, Richard R.</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system. [Display omitted] •Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</description><subject>Animals</subject><subject>antibody-enzyme therapy</subject><subject>Brain - metabolism</subject><subject>Cells, Cultured</subject><subject>childhood dementia</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>glucosamine</subject><subject>Glucosamine - metabolism</subject><subject>Glycogen - metabolism</subject><subject>Glycogen - physiology</subject><subject>glycogen storage disease</subject><subject>Glycogen Synthase - genetics</subject><subject>Glycogen Synthase - metabolism</subject><subject>Glycogenolysis - genetics</subject><subject>Glycosylation</subject><subject>Lafora disease</subject><subject>Lafora Disease - genetics</subject><subject>Lafora Disease - metabolism</subject><subject>Lafora Disease - pathology</subject><subject>MALDI imaging</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>N-linked glycosylation</subject><subject>polyglucosan body</subject><subject>Protein Processing, Post-Translational - genetics</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1L5DAUxYO4-P0P-CB99KU1352CCCq7uiDsyy74FtLb25kMbTMm7cD892YYR_RlIZDA-d1zwzmEXDJaMMr0zbKAHseCU84KqgpKxQE5YZXgeSk5PUxvpWgumWDH5DTGZQK0qMQRORaSSlFJfkJeH4J1QzbvNuDnOGQRwxpjZtPJILjRge2SOoGPtncDZmBhgVnAt8kFbLLWh2wV_Ih7k7jp7Oj8cE5-tLaLePFxn5F_v37-fXzOX_48_X68f8lBKjXm7UxRWXFUNZuVZWVVA5ZV0toWsaYNMODMItNMVq1ObN00NTbAW4qy1liLM3K3811NdZ8UHMZgO7MKrrdhY7x15rsyuIWZ-7WZca1LOUsG1x8Gwb9NGEfTuwjYdXZAP0XDlZCacV1WCeU7FIKPMWD7uYZRs63ELM22ErOtxFBlUuJp6OrrBz9H9h0k4HYHYIpp7TCYCA4HwCYlDKNpvPuf_zsNv6C0</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Sun, Ramon C.</creator><creator>Young, Lyndsay E.A.</creator><creator>Bruntz, Ronald C.</creator><creator>Markussen, Kia H.</creator><creator>Zhou, Zhengqiu</creator><creator>Conroy, Lindsey R.</creator><creator>Hawkinson, Tara R.</creator><creator>Clarke, Harrison A.</creator><creator>Stanback, Alexandra E.</creator><creator>Macedo, Jessica K.A.</creator><creator>Emanuelle, Shane</creator><creator>Brewer, M. Kathryn</creator><creator>Rondon, Alberto L.</creator><creator>Mestas, Annette</creator><creator>Sanders, William C.</creator><creator>Mahalingan, Krishna K.</creator><creator>Tang, Buyun</creator><creator>Chikwana, Vimbai M.</creator><creator>Segvich, Dyann M.</creator><creator>Contreras, Christopher J.</creator><creator>Allenger, Elizabeth J.</creator><creator>Brainson, Christine F.</creator><creator>Johnson, Lance A.</creator><creator>Taylor, Richard E.</creator><creator>Armstrong, Dustin D.</creator><creator>Shaffer, Robert</creator><creator>Waechter, Charles J.</creator><creator>Vander Kooi, Craig W.</creator><creator>DePaoli-Roach, Anna A.</creator><creator>Roach, Peter J.</creator><creator>Hurley, Thomas D.</creator><creator>Drake, Richard R.</creator><creator>Gentry, Matthew S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210706</creationdate><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><author>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>antibody-enzyme therapy</topic><topic>Brain - metabolism</topic><topic>Cells, Cultured</topic><topic>childhood dementia</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>glucosamine</topic><topic>Glucosamine - metabolism</topic><topic>Glycogen - metabolism</topic><topic>Glycogen - physiology</topic><topic>glycogen storage disease</topic><topic>Glycogen Synthase - genetics</topic><topic>Glycogen Synthase - metabolism</topic><topic>Glycogenolysis - genetics</topic><topic>Glycosylation</topic><topic>Lafora disease</topic><topic>Lafora Disease - genetics</topic><topic>Lafora Disease - metabolism</topic><topic>Lafora Disease - pathology</topic><topic>MALDI imaging</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>N-linked glycosylation</topic><topic>polyglucosan body</topic><topic>Protein Processing, Post-Translational - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ramon C.</creatorcontrib><creatorcontrib>Young, Lyndsay E.A.</creatorcontrib><creatorcontrib>Bruntz, Ronald C.</creatorcontrib><creatorcontrib>Markussen, Kia H.</creatorcontrib><creatorcontrib>Zhou, Zhengqiu</creatorcontrib><creatorcontrib>Conroy, Lindsey R.</creatorcontrib><creatorcontrib>Hawkinson, Tara R.</creatorcontrib><creatorcontrib>Clarke, Harrison A.</creatorcontrib><creatorcontrib>Stanback, Alexandra E.</creatorcontrib><creatorcontrib>Macedo, Jessica K.A.</creatorcontrib><creatorcontrib>Emanuelle, Shane</creatorcontrib><creatorcontrib>Brewer, M. Kathryn</creatorcontrib><creatorcontrib>Rondon, Alberto L.</creatorcontrib><creatorcontrib>Mestas, Annette</creatorcontrib><creatorcontrib>Sanders, William C.</creatorcontrib><creatorcontrib>Mahalingan, Krishna K.</creatorcontrib><creatorcontrib>Tang, Buyun</creatorcontrib><creatorcontrib>Chikwana, Vimbai M.</creatorcontrib><creatorcontrib>Segvich, Dyann M.</creatorcontrib><creatorcontrib>Contreras, Christopher J.</creatorcontrib><creatorcontrib>Allenger, Elizabeth J.</creatorcontrib><creatorcontrib>Brainson, Christine F.</creatorcontrib><creatorcontrib>Johnson, Lance A.</creatorcontrib><creatorcontrib>Taylor, Richard E.</creatorcontrib><creatorcontrib>Armstrong, Dustin D.</creatorcontrib><creatorcontrib>Shaffer, Robert</creatorcontrib><creatorcontrib>Waechter, Charles J.</creatorcontrib><creatorcontrib>Vander Kooi, Craig W.</creatorcontrib><creatorcontrib>DePaoli-Roach, Anna A.</creatorcontrib><creatorcontrib>Roach, Peter J.</creatorcontrib><creatorcontrib>Hurley, Thomas D.</creatorcontrib><creatorcontrib>Drake, Richard R.</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ramon C.</au><au>Young, Lyndsay E.A.</au><au>Bruntz, Ronald C.</au><au>Markussen, Kia H.</au><au>Zhou, Zhengqiu</au><au>Conroy, Lindsey R.</au><au>Hawkinson, Tara R.</au><au>Clarke, Harrison A.</au><au>Stanback, Alexandra E.</au><au>Macedo, Jessica K.A.</au><au>Emanuelle, Shane</au><au>Brewer, M. Kathryn</au><au>Rondon, Alberto L.</au><au>Mestas, Annette</au><au>Sanders, William C.</au><au>Mahalingan, Krishna K.</au><au>Tang, Buyun</au><au>Chikwana, Vimbai M.</au><au>Segvich, Dyann M.</au><au>Contreras, Christopher J.</au><au>Allenger, Elizabeth J.</au><au>Brainson, Christine F.</au><au>Johnson, Lance A.</au><au>Taylor, Richard E.</au><au>Armstrong, Dustin D.</au><au>Shaffer, Robert</au><au>Waechter, Charles J.</au><au>Vander Kooi, Craig W.</au><au>DePaoli-Roach, Anna A.</au><au>Roach, Peter J.</au><au>Hurley, Thomas D.</au><au>Drake, Richard R.</au><au>Gentry, Matthew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><spage>1404</spage><epage>1417.e9</epage><pages>1404-1417.e9</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system. [Display omitted] •Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34043942</pmid><doi>10.1016/j.cmet.2021.05.003</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2021-07, Vol.33 (7), p.1404-1417.e9
issn 1550-4131
1932-7420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8266748
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
antibody-enzyme therapy
Brain - metabolism
Cells, Cultured
childhood dementia
Disease Models, Animal
Female
glucosamine
Glucosamine - metabolism
Glycogen - metabolism
Glycogen - physiology
glycogen storage disease
Glycogen Synthase - genetics
Glycogen Synthase - metabolism
Glycogenolysis - genetics
Glycosylation
Lafora disease
Lafora Disease - genetics
Lafora Disease - metabolism
Lafora Disease - pathology
MALDI imaging
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
N-linked glycosylation
polyglucosan body
Protein Processing, Post-Translational - genetics
title Brain glycogen serves as a critical glucosamine cache required for protein glycosylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20glycogen%20serves%20as%20a%20critical%20glucosamine%20cache%20required%20for%20protein%20glycosylation&rft.jtitle=Cell%20metabolism&rft.au=Sun,%20Ramon%20C.&rft.date=2021-07-06&rft.volume=33&rft.issue=7&rft.spage=1404&rft.epage=1417.e9&rft.pages=1404-1417.e9&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2021.05.003&rft_dat=%3Cproquest_pubme%3E2534612679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534612679&rft_id=info:pmid/34043942&rft_els_id=S1550413121002205&rfr_iscdi=true