Brain glycogen serves as a critical glucosamine cache required for protein glycosylation
Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogeno...
Gespeichert in:
Veröffentlicht in: | Cell metabolism 2021-07, Vol.33 (7), p.1404-1417.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1417.e9 |
---|---|
container_issue | 7 |
container_start_page | 1404 |
container_title | Cell metabolism |
container_volume | 33 |
creator | Sun, Ramon C. Young, Lyndsay E.A. Bruntz, Ronald C. Markussen, Kia H. Zhou, Zhengqiu Conroy, Lindsey R. Hawkinson, Tara R. Clarke, Harrison A. Stanback, Alexandra E. Macedo, Jessica K.A. Emanuelle, Shane Brewer, M. Kathryn Rondon, Alberto L. Mestas, Annette Sanders, William C. Mahalingan, Krishna K. Tang, Buyun Chikwana, Vimbai M. Segvich, Dyann M. Contreras, Christopher J. Allenger, Elizabeth J. Brainson, Christine F. Johnson, Lance A. Taylor, Richard E. Armstrong, Dustin D. Shaffer, Robert Waechter, Charles J. Vander Kooi, Craig W. DePaoli-Roach, Anna A. Roach, Peter J. Hurley, Thomas D. Drake, Richard R. Gentry, Matthew S. |
description | Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
[Display omitted]
•Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain
Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation. |
doi_str_mv | 10.1016/j.cmet.2021.05.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8266748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413121002205</els_id><sourcerecordid>2534612679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</originalsourceid><addsrcrecordid>eNp9kd1L5DAUxYO4-P0P-CB99KU1352CCCq7uiDsyy74FtLb25kMbTMm7cD892YYR_RlIZDA-d1zwzmEXDJaMMr0zbKAHseCU84KqgpKxQE5YZXgeSk5PUxvpWgumWDH5DTGZQK0qMQRORaSSlFJfkJeH4J1QzbvNuDnOGQRwxpjZtPJILjRge2SOoGPtncDZmBhgVnAt8kFbLLWh2wV_Ih7k7jp7Oj8cE5-tLaLePFxn5F_v37-fXzOX_48_X68f8lBKjXm7UxRWXFUNZuVZWVVA5ZV0toWsaYNMODMItNMVq1ObN00NTbAW4qy1liLM3K3811NdZ8UHMZgO7MKrrdhY7x15rsyuIWZ-7WZca1LOUsG1x8Gwb9NGEfTuwjYdXZAP0XDlZCacV1WCeU7FIKPMWD7uYZRs63ELM22ErOtxFBlUuJp6OrrBz9H9h0k4HYHYIpp7TCYCA4HwCYlDKNpvPuf_zsNv6C0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2534612679</pqid></control><display><type>article</type><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</creator><creatorcontrib>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</creatorcontrib><description>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
[Display omitted]
•Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain
Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2021.05.003</identifier><identifier>PMID: 34043942</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; antibody-enzyme therapy ; Brain - metabolism ; Cells, Cultured ; childhood dementia ; Disease Models, Animal ; Female ; glucosamine ; Glucosamine - metabolism ; Glycogen - metabolism ; Glycogen - physiology ; glycogen storage disease ; Glycogen Synthase - genetics ; Glycogen Synthase - metabolism ; Glycogenolysis - genetics ; Glycosylation ; Lafora disease ; Lafora Disease - genetics ; Lafora Disease - metabolism ; Lafora Disease - pathology ; MALDI imaging ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; N-linked glycosylation ; polyglucosan body ; Protein Processing, Post-Translational - genetics</subject><ispartof>Cell metabolism, 2021-07, Vol.33 (7), p.1404-1417.e9</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</citedby><cites>FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmet.2021.05.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34043942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Ramon C.</creatorcontrib><creatorcontrib>Young, Lyndsay E.A.</creatorcontrib><creatorcontrib>Bruntz, Ronald C.</creatorcontrib><creatorcontrib>Markussen, Kia H.</creatorcontrib><creatorcontrib>Zhou, Zhengqiu</creatorcontrib><creatorcontrib>Conroy, Lindsey R.</creatorcontrib><creatorcontrib>Hawkinson, Tara R.</creatorcontrib><creatorcontrib>Clarke, Harrison A.</creatorcontrib><creatorcontrib>Stanback, Alexandra E.</creatorcontrib><creatorcontrib>Macedo, Jessica K.A.</creatorcontrib><creatorcontrib>Emanuelle, Shane</creatorcontrib><creatorcontrib>Brewer, M. Kathryn</creatorcontrib><creatorcontrib>Rondon, Alberto L.</creatorcontrib><creatorcontrib>Mestas, Annette</creatorcontrib><creatorcontrib>Sanders, William C.</creatorcontrib><creatorcontrib>Mahalingan, Krishna K.</creatorcontrib><creatorcontrib>Tang, Buyun</creatorcontrib><creatorcontrib>Chikwana, Vimbai M.</creatorcontrib><creatorcontrib>Segvich, Dyann M.</creatorcontrib><creatorcontrib>Contreras, Christopher J.</creatorcontrib><creatorcontrib>Allenger, Elizabeth J.</creatorcontrib><creatorcontrib>Brainson, Christine F.</creatorcontrib><creatorcontrib>Johnson, Lance A.</creatorcontrib><creatorcontrib>Taylor, Richard E.</creatorcontrib><creatorcontrib>Armstrong, Dustin D.</creatorcontrib><creatorcontrib>Shaffer, Robert</creatorcontrib><creatorcontrib>Waechter, Charles J.</creatorcontrib><creatorcontrib>Vander Kooi, Craig W.</creatorcontrib><creatorcontrib>DePaoli-Roach, Anna A.</creatorcontrib><creatorcontrib>Roach, Peter J.</creatorcontrib><creatorcontrib>Hurley, Thomas D.</creatorcontrib><creatorcontrib>Drake, Richard R.</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
[Display omitted]
•Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain
Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</description><subject>Animals</subject><subject>antibody-enzyme therapy</subject><subject>Brain - metabolism</subject><subject>Cells, Cultured</subject><subject>childhood dementia</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>glucosamine</subject><subject>Glucosamine - metabolism</subject><subject>Glycogen - metabolism</subject><subject>Glycogen - physiology</subject><subject>glycogen storage disease</subject><subject>Glycogen Synthase - genetics</subject><subject>Glycogen Synthase - metabolism</subject><subject>Glycogenolysis - genetics</subject><subject>Glycosylation</subject><subject>Lafora disease</subject><subject>Lafora Disease - genetics</subject><subject>Lafora Disease - metabolism</subject><subject>Lafora Disease - pathology</subject><subject>MALDI imaging</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>N-linked glycosylation</subject><subject>polyglucosan body</subject><subject>Protein Processing, Post-Translational - genetics</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1L5DAUxYO4-P0P-CB99KU1352CCCq7uiDsyy74FtLb25kMbTMm7cD892YYR_RlIZDA-d1zwzmEXDJaMMr0zbKAHseCU84KqgpKxQE5YZXgeSk5PUxvpWgumWDH5DTGZQK0qMQRORaSSlFJfkJeH4J1QzbvNuDnOGQRwxpjZtPJILjRge2SOoGPtncDZmBhgVnAt8kFbLLWh2wV_Ih7k7jp7Oj8cE5-tLaLePFxn5F_v37-fXzOX_48_X68f8lBKjXm7UxRWXFUNZuVZWVVA5ZV0toWsaYNMODMItNMVq1ObN00NTbAW4qy1liLM3K3811NdZ8UHMZgO7MKrrdhY7x15rsyuIWZ-7WZca1LOUsG1x8Gwb9NGEfTuwjYdXZAP0XDlZCacV1WCeU7FIKPMWD7uYZRs63ELM22ErOtxFBlUuJp6OrrBz9H9h0k4HYHYIpp7TCYCA4HwCYlDKNpvPuf_zsNv6C0</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Sun, Ramon C.</creator><creator>Young, Lyndsay E.A.</creator><creator>Bruntz, Ronald C.</creator><creator>Markussen, Kia H.</creator><creator>Zhou, Zhengqiu</creator><creator>Conroy, Lindsey R.</creator><creator>Hawkinson, Tara R.</creator><creator>Clarke, Harrison A.</creator><creator>Stanback, Alexandra E.</creator><creator>Macedo, Jessica K.A.</creator><creator>Emanuelle, Shane</creator><creator>Brewer, M. Kathryn</creator><creator>Rondon, Alberto L.</creator><creator>Mestas, Annette</creator><creator>Sanders, William C.</creator><creator>Mahalingan, Krishna K.</creator><creator>Tang, Buyun</creator><creator>Chikwana, Vimbai M.</creator><creator>Segvich, Dyann M.</creator><creator>Contreras, Christopher J.</creator><creator>Allenger, Elizabeth J.</creator><creator>Brainson, Christine F.</creator><creator>Johnson, Lance A.</creator><creator>Taylor, Richard E.</creator><creator>Armstrong, Dustin D.</creator><creator>Shaffer, Robert</creator><creator>Waechter, Charles J.</creator><creator>Vander Kooi, Craig W.</creator><creator>DePaoli-Roach, Anna A.</creator><creator>Roach, Peter J.</creator><creator>Hurley, Thomas D.</creator><creator>Drake, Richard R.</creator><creator>Gentry, Matthew S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210706</creationdate><title>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</title><author>Sun, Ramon C. ; Young, Lyndsay E.A. ; Bruntz, Ronald C. ; Markussen, Kia H. ; Zhou, Zhengqiu ; Conroy, Lindsey R. ; Hawkinson, Tara R. ; Clarke, Harrison A. ; Stanback, Alexandra E. ; Macedo, Jessica K.A. ; Emanuelle, Shane ; Brewer, M. Kathryn ; Rondon, Alberto L. ; Mestas, Annette ; Sanders, William C. ; Mahalingan, Krishna K. ; Tang, Buyun ; Chikwana, Vimbai M. ; Segvich, Dyann M. ; Contreras, Christopher J. ; Allenger, Elizabeth J. ; Brainson, Christine F. ; Johnson, Lance A. ; Taylor, Richard E. ; Armstrong, Dustin D. ; Shaffer, Robert ; Waechter, Charles J. ; Vander Kooi, Craig W. ; DePaoli-Roach, Anna A. ; Roach, Peter J. ; Hurley, Thomas D. ; Drake, Richard R. ; Gentry, Matthew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f850492e5b18779a5dca194aafeeb0dc1c21ae16149f6850bddbedc2f0e4b6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>antibody-enzyme therapy</topic><topic>Brain - metabolism</topic><topic>Cells, Cultured</topic><topic>childhood dementia</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>glucosamine</topic><topic>Glucosamine - metabolism</topic><topic>Glycogen - metabolism</topic><topic>Glycogen - physiology</topic><topic>glycogen storage disease</topic><topic>Glycogen Synthase - genetics</topic><topic>Glycogen Synthase - metabolism</topic><topic>Glycogenolysis - genetics</topic><topic>Glycosylation</topic><topic>Lafora disease</topic><topic>Lafora Disease - genetics</topic><topic>Lafora Disease - metabolism</topic><topic>Lafora Disease - pathology</topic><topic>MALDI imaging</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>N-linked glycosylation</topic><topic>polyglucosan body</topic><topic>Protein Processing, Post-Translational - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ramon C.</creatorcontrib><creatorcontrib>Young, Lyndsay E.A.</creatorcontrib><creatorcontrib>Bruntz, Ronald C.</creatorcontrib><creatorcontrib>Markussen, Kia H.</creatorcontrib><creatorcontrib>Zhou, Zhengqiu</creatorcontrib><creatorcontrib>Conroy, Lindsey R.</creatorcontrib><creatorcontrib>Hawkinson, Tara R.</creatorcontrib><creatorcontrib>Clarke, Harrison A.</creatorcontrib><creatorcontrib>Stanback, Alexandra E.</creatorcontrib><creatorcontrib>Macedo, Jessica K.A.</creatorcontrib><creatorcontrib>Emanuelle, Shane</creatorcontrib><creatorcontrib>Brewer, M. Kathryn</creatorcontrib><creatorcontrib>Rondon, Alberto L.</creatorcontrib><creatorcontrib>Mestas, Annette</creatorcontrib><creatorcontrib>Sanders, William C.</creatorcontrib><creatorcontrib>Mahalingan, Krishna K.</creatorcontrib><creatorcontrib>Tang, Buyun</creatorcontrib><creatorcontrib>Chikwana, Vimbai M.</creatorcontrib><creatorcontrib>Segvich, Dyann M.</creatorcontrib><creatorcontrib>Contreras, Christopher J.</creatorcontrib><creatorcontrib>Allenger, Elizabeth J.</creatorcontrib><creatorcontrib>Brainson, Christine F.</creatorcontrib><creatorcontrib>Johnson, Lance A.</creatorcontrib><creatorcontrib>Taylor, Richard E.</creatorcontrib><creatorcontrib>Armstrong, Dustin D.</creatorcontrib><creatorcontrib>Shaffer, Robert</creatorcontrib><creatorcontrib>Waechter, Charles J.</creatorcontrib><creatorcontrib>Vander Kooi, Craig W.</creatorcontrib><creatorcontrib>DePaoli-Roach, Anna A.</creatorcontrib><creatorcontrib>Roach, Peter J.</creatorcontrib><creatorcontrib>Hurley, Thomas D.</creatorcontrib><creatorcontrib>Drake, Richard R.</creatorcontrib><creatorcontrib>Gentry, Matthew S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ramon C.</au><au>Young, Lyndsay E.A.</au><au>Bruntz, Ronald C.</au><au>Markussen, Kia H.</au><au>Zhou, Zhengqiu</au><au>Conroy, Lindsey R.</au><au>Hawkinson, Tara R.</au><au>Clarke, Harrison A.</au><au>Stanback, Alexandra E.</au><au>Macedo, Jessica K.A.</au><au>Emanuelle, Shane</au><au>Brewer, M. Kathryn</au><au>Rondon, Alberto L.</au><au>Mestas, Annette</au><au>Sanders, William C.</au><au>Mahalingan, Krishna K.</au><au>Tang, Buyun</au><au>Chikwana, Vimbai M.</au><au>Segvich, Dyann M.</au><au>Contreras, Christopher J.</au><au>Allenger, Elizabeth J.</au><au>Brainson, Christine F.</au><au>Johnson, Lance A.</au><au>Taylor, Richard E.</au><au>Armstrong, Dustin D.</au><au>Shaffer, Robert</au><au>Waechter, Charles J.</au><au>Vander Kooi, Craig W.</au><au>DePaoli-Roach, Anna A.</au><au>Roach, Peter J.</au><au>Hurley, Thomas D.</au><au>Drake, Richard R.</au><au>Gentry, Matthew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain glycogen serves as a critical glucosamine cache required for protein glycosylation</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><spage>1404</spage><epage>1417.e9</epage><pages>1404-1417.e9</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
[Display omitted]
•Brain glycogen contains 25% glucosamine•A novel mass spectrometry imaging method reveals brain glycogen distributions•Glucosamine flux through glycogen is mediated by the enzymes GYS, GP, and GDE•Glycogen storage disease mutations impair protein glycosylation in the brain
Sun et al. demonstrate that glycogen serves as a critical reservoir of glucosamine in the nervous system and map protein N-glycosylation patterns in the brain. In models of glycogen storage diseases, impaired flux of glucosamine through glycogen by the same enzymes that mediate flux of glucose is associated with reduced protein N-glycosylation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34043942</pmid><doi>10.1016/j.cmet.2021.05.003</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4131 |
ispartof | Cell metabolism, 2021-07, Vol.33 (7), p.1404-1417.e9 |
issn | 1550-4131 1932-7420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8266748 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals antibody-enzyme therapy Brain - metabolism Cells, Cultured childhood dementia Disease Models, Animal Female glucosamine Glucosamine - metabolism Glycogen - metabolism Glycogen - physiology glycogen storage disease Glycogen Synthase - genetics Glycogen Synthase - metabolism Glycogenolysis - genetics Glycosylation Lafora disease Lafora Disease - genetics Lafora Disease - metabolism Lafora Disease - pathology MALDI imaging Male Mice Mice, Inbred C57BL Mice, Knockout N-linked glycosylation polyglucosan body Protein Processing, Post-Translational - genetics |
title | Brain glycogen serves as a critical glucosamine cache required for protein glycosylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20glycogen%20serves%20as%20a%20critical%20glucosamine%20cache%20required%20for%20protein%20glycosylation&rft.jtitle=Cell%20metabolism&rft.au=Sun,%20Ramon%20C.&rft.date=2021-07-06&rft.volume=33&rft.issue=7&rft.spage=1404&rft.epage=1417.e9&rft.pages=1404-1417.e9&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2021.05.003&rft_dat=%3Cproquest_pubme%3E2534612679%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2534612679&rft_id=info:pmid/34043942&rft_els_id=S1550413121002205&rfr_iscdi=true |