eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping

Abstract Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-07, Vol.49 (W1), p.W193-W198
Hauptverfasser: Chiba, Shuntaro, Lim, Kenji Rowel Q, Sheri, Narin, Anwar, Saeed, Erkut, Esra, Shah, Md Nur Ahad, Aslesh, Tejal, Woo, Stanley, Sheikh, Omar, Maruyama, Rika, Takano, Hiroaki, Kunitake, Katsuhiko, Duddy, William, Okuno, Yasushi, Aoki, Yoshitsugu, Yokota, Toshifumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W198
container_issue W1
container_start_page W193
container_title Nucleic acids research
container_volume 49
creator Chiba, Shuntaro
Lim, Kenji Rowel Q
Sheri, Narin
Anwar, Saeed
Erkut, Esra
Shah, Md Nur Ahad
Aslesh, Tejal
Woo, Stanley
Sheikh, Omar
Maruyama, Rika
Takano, Hiroaki
Kunitake, Katsuhiko
Duddy, William
Okuno, Yasushi
Aoki, Yoshitsugu
Yokota, Toshifumi
description Abstract Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number. Graphical Abstract Graphical Abstract eSkip-Finder uses information on exon skipping antisense oligonucleotides from the literature to produce a database and a skipping efficacy predictive tool to aid researchers in designing effective exon skipping therapies.
doi_str_mv 10.1093/nar/gkab442
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8265194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab442</oup_id><sourcerecordid>2539522769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-628e989f6d8acee9e012eb785bc2c2d55d1a73fbcc590b31195632f80e911c9c3</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMo7rh68gVyEkHazd-ejgdhWVwVFjyo51CdVM_E7UnaJK3ug_i-ZplB8OKpoOpXX33FR8hzzl5zZuRFhHyxu4VRKfGAbLjsRadMLx6SDZNMd5yp4Yw8KeUbY1xxrR6TM6la12zFhvzGz7dh6a5D9JjfUKAHcPsQkc4IOYa460Yo6OlPHCksyxwc1JAiheiphwr3U1oTDR5jDdMdrXukaanhADMt-H3F6LDQNLWNGgrGhqc57FJc3Yyptr1Cp5Qp_mqqpXlZ2tGn5NEEc8Fnp3pOvl6_-3L1obv59P7j1eVN55TWtevFgGYwU-8HcIgGGRc4bgc9OuGE19pz2MppdE4bNkrOje6lmAaGhnNnnDwnb4-6yzoe0Lv2Q4bZLrnZz3c2QbD_TmLY2136YQfRa25UE3h5Esip_VqqPYTicJ4hYlqLFVoaLcS2Nw19dURdTqVknP6e4czeB2lbkPYUZKNfHOm0Lv8F_wA_lqKS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539522769</pqid></control><display><type>article</type><title>eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chiba, Shuntaro ; Lim, Kenji Rowel Q ; Sheri, Narin ; Anwar, Saeed ; Erkut, Esra ; Shah, Md Nur Ahad ; Aslesh, Tejal ; Woo, Stanley ; Sheikh, Omar ; Maruyama, Rika ; Takano, Hiroaki ; Kunitake, Katsuhiko ; Duddy, William ; Okuno, Yasushi ; Aoki, Yoshitsugu ; Yokota, Toshifumi</creator><creatorcontrib>Chiba, Shuntaro ; Lim, Kenji Rowel Q ; Sheri, Narin ; Anwar, Saeed ; Erkut, Esra ; Shah, Md Nur Ahad ; Aslesh, Tejal ; Woo, Stanley ; Sheikh, Omar ; Maruyama, Rika ; Takano, Hiroaki ; Kunitake, Katsuhiko ; Duddy, William ; Okuno, Yasushi ; Aoki, Yoshitsugu ; Yokota, Toshifumi</creatorcontrib><description>Abstract Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number. Graphical Abstract Graphical Abstract eSkip-Finder uses information on exon skipping antisense oligonucleotides from the literature to produce a database and a skipping efficacy predictive tool to aid researchers in designing effective exon skipping therapies.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab442</identifier><identifier>PMID: 34104972</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Web Server Issue</subject><ispartof>Nucleic acids research, 2021-07, Vol.49 (W1), p.W193-W198</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-628e989f6d8acee9e012eb785bc2c2d55d1a73fbcc590b31195632f80e911c9c3</citedby><cites>FETCH-LOGICAL-c455t-628e989f6d8acee9e012eb785bc2c2d55d1a73fbcc590b31195632f80e911c9c3</cites><orcidid>0000-0001-7316-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265194/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265194/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Chiba, Shuntaro</creatorcontrib><creatorcontrib>Lim, Kenji Rowel Q</creatorcontrib><creatorcontrib>Sheri, Narin</creatorcontrib><creatorcontrib>Anwar, Saeed</creatorcontrib><creatorcontrib>Erkut, Esra</creatorcontrib><creatorcontrib>Shah, Md Nur Ahad</creatorcontrib><creatorcontrib>Aslesh, Tejal</creatorcontrib><creatorcontrib>Woo, Stanley</creatorcontrib><creatorcontrib>Sheikh, Omar</creatorcontrib><creatorcontrib>Maruyama, Rika</creatorcontrib><creatorcontrib>Takano, Hiroaki</creatorcontrib><creatorcontrib>Kunitake, Katsuhiko</creatorcontrib><creatorcontrib>Duddy, William</creatorcontrib><creatorcontrib>Okuno, Yasushi</creatorcontrib><creatorcontrib>Aoki, Yoshitsugu</creatorcontrib><creatorcontrib>Yokota, Toshifumi</creatorcontrib><title>eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping</title><title>Nucleic acids research</title><description>Abstract Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number. Graphical Abstract Graphical Abstract eSkip-Finder uses information on exon skipping antisense oligonucleotides from the literature to produce a database and a skipping efficacy predictive tool to aid researchers in designing effective exon skipping therapies.</description><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kc-KFDEQxoMo7rh68gVyEkHazd-ejgdhWVwVFjyo51CdVM_E7UnaJK3ug_i-ZplB8OKpoOpXX33FR8hzzl5zZuRFhHyxu4VRKfGAbLjsRadMLx6SDZNMd5yp4Yw8KeUbY1xxrR6TM6la12zFhvzGz7dh6a5D9JjfUKAHcPsQkc4IOYa460Yo6OlPHCksyxwc1JAiheiphwr3U1oTDR5jDdMdrXukaanhADMt-H3F6LDQNLWNGgrGhqc57FJc3Yyptr1Cp5Qp_mqqpXlZ2tGn5NEEc8Fnp3pOvl6_-3L1obv59P7j1eVN55TWtevFgGYwU-8HcIgGGRc4bgc9OuGE19pz2MppdE4bNkrOje6lmAaGhnNnnDwnb4-6yzoe0Lv2Q4bZLrnZz3c2QbD_TmLY2136YQfRa25UE3h5Esip_VqqPYTicJ4hYlqLFVoaLcS2Nw19dURdTqVknP6e4czeB2lbkPYUZKNfHOm0Lv8F_wA_lqKS</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Chiba, Shuntaro</creator><creator>Lim, Kenji Rowel Q</creator><creator>Sheri, Narin</creator><creator>Anwar, Saeed</creator><creator>Erkut, Esra</creator><creator>Shah, Md Nur Ahad</creator><creator>Aslesh, Tejal</creator><creator>Woo, Stanley</creator><creator>Sheikh, Omar</creator><creator>Maruyama, Rika</creator><creator>Takano, Hiroaki</creator><creator>Kunitake, Katsuhiko</creator><creator>Duddy, William</creator><creator>Okuno, Yasushi</creator><creator>Aoki, Yoshitsugu</creator><creator>Yokota, Toshifumi</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7316-3546</orcidid></search><sort><creationdate>20210702</creationdate><title>eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping</title><author>Chiba, Shuntaro ; Lim, Kenji Rowel Q ; Sheri, Narin ; Anwar, Saeed ; Erkut, Esra ; Shah, Md Nur Ahad ; Aslesh, Tejal ; Woo, Stanley ; Sheikh, Omar ; Maruyama, Rika ; Takano, Hiroaki ; Kunitake, Katsuhiko ; Duddy, William ; Okuno, Yasushi ; Aoki, Yoshitsugu ; Yokota, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-628e989f6d8acee9e012eb785bc2c2d55d1a73fbcc590b31195632f80e911c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiba, Shuntaro</creatorcontrib><creatorcontrib>Lim, Kenji Rowel Q</creatorcontrib><creatorcontrib>Sheri, Narin</creatorcontrib><creatorcontrib>Anwar, Saeed</creatorcontrib><creatorcontrib>Erkut, Esra</creatorcontrib><creatorcontrib>Shah, Md Nur Ahad</creatorcontrib><creatorcontrib>Aslesh, Tejal</creatorcontrib><creatorcontrib>Woo, Stanley</creatorcontrib><creatorcontrib>Sheikh, Omar</creatorcontrib><creatorcontrib>Maruyama, Rika</creatorcontrib><creatorcontrib>Takano, Hiroaki</creatorcontrib><creatorcontrib>Kunitake, Katsuhiko</creatorcontrib><creatorcontrib>Duddy, William</creatorcontrib><creatorcontrib>Okuno, Yasushi</creatorcontrib><creatorcontrib>Aoki, Yoshitsugu</creatorcontrib><creatorcontrib>Yokota, Toshifumi</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiba, Shuntaro</au><au>Lim, Kenji Rowel Q</au><au>Sheri, Narin</au><au>Anwar, Saeed</au><au>Erkut, Esra</au><au>Shah, Md Nur Ahad</au><au>Aslesh, Tejal</au><au>Woo, Stanley</au><au>Sheikh, Omar</au><au>Maruyama, Rika</au><au>Takano, Hiroaki</au><au>Kunitake, Katsuhiko</au><au>Duddy, William</au><au>Okuno, Yasushi</au><au>Aoki, Yoshitsugu</au><au>Yokota, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping</atitle><jtitle>Nucleic acids research</jtitle><date>2021-07-02</date><risdate>2021</risdate><volume>49</volume><issue>W1</issue><spage>W193</spage><epage>W198</epage><pages>W193-W198</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number. Graphical Abstract Graphical Abstract eSkip-Finder uses information on exon skipping antisense oligonucleotides from the literature to produce a database and a skipping efficacy predictive tool to aid researchers in designing effective exon skipping therapies.</abstract><pub>Oxford University Press</pub><pmid>34104972</pmid><doi>10.1093/nar/gkab442</doi><orcidid>https://orcid.org/0000-0001-7316-3546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-07, Vol.49 (W1), p.W193-W198
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8265194
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Web Server Issue
title eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=eSkip-Finder:%20a%20machine%20learning-based%20web%20application%20and%20database%20to%20identify%20the%20optimal%20sequences%20of%20antisense%20oligonucleotides%20for%20exon%20skipping&rft.jtitle=Nucleic%20acids%20research&rft.au=Chiba,%20Shuntaro&rft.date=2021-07-02&rft.volume=49&rft.issue=W1&rft.spage=W193&rft.epage=W198&rft.pages=W193-W198&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab442&rft_dat=%3Cproquest_pubme%3E2539522769%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539522769&rft_id=info:pmid/34104972&rft_oup_id=10.1093/nar/gkab442&rfr_iscdi=true