DGLinker: flexible knowledge-graph prediction of disease–gene associations
Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present a...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-07, Vol.49 (W1), p.W153-W161 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | W161 |
---|---|
container_issue | W1 |
container_start_page | W153 |
container_title | Nucleic acids research |
container_volume | 49 |
creator | Hu, Jiajing Lepore, Rosalba Dobson, Richard J B Al-Chalabi, Ammar M. Bean, Daniel Iacoangeli, Alfredo |
description | Abstract
As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration.
Graphical Abstract
Graphical Abstract
DGLinker: flexible knowledge-graph prediction of disease-gene associations. |
doi_str_mv | 10.1093/nar/gkab449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8262728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab449</oup_id><sourcerecordid>2541321399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</originalsourceid><addsrcrecordid>eNp9kL1O40AUhUcr0BKyVPTIFUJChvmzPbPFSoh_KRLNUo-ux9dmiOPxziQLdLwDb8iT4CgBQUN1i_PpO1eHkF1GjxjV4riDcNxMoZRS_yAjJnKeSp3zDTKigmYpo1Jtke0Y7yllkmXyJ9kSkvFM6WJEJmeXE9dNMfxO6hYfXdliMu38Q4tVg2kToL9L-oCVs3Pnu8TXSeUiQsTX55cGO0wgRm8dLNP4i2zW0EbcWd8xub04_3t6lU5uLq9PTyapHXrnqS241CBKQIp5DZW0nHNQCmmdF5TzSlthVY65sgiFzQSUotaVLSRTFkQtxuTPytsvyhlWFrt5gNb0wc0gPBkPznxNOndnGv_fKJ7zgqtBcLAWBP9vgXFuZi5abFvo0C-i4ZlkgjOh9YAerlAbfIwB648aRs1yfzPsb9b7D_Te588-2PfBB2B_BfhF_63pDVkTkrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541321399</pqid></control><display><type>article</type><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</creator><creatorcontrib>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</creatorcontrib><description>Abstract
As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration.
Graphical Abstract
Graphical Abstract
DGLinker: flexible knowledge-graph prediction of disease-gene associations.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab449</identifier><identifier>PMID: 34125897</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amyotrophic Lateral Sclerosis - genetics ; Computer Graphics ; Disease - genetics ; Genes ; Humans ; Machine Learning ; Software ; Web Server Issue</subject><ispartof>Nucleic acids research, 2021-07, Vol.49 (W1), p.W153-W161</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</citedby><cites>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</cites><orcidid>0000-0002-5280-5017 ; 0000-0002-4924-7712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262728/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34125897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jiajing</creatorcontrib><creatorcontrib>Lepore, Rosalba</creatorcontrib><creatorcontrib>Dobson, Richard J B</creatorcontrib><creatorcontrib>Al-Chalabi, Ammar</creatorcontrib><creatorcontrib>M. Bean, Daniel</creatorcontrib><creatorcontrib>Iacoangeli, Alfredo</creatorcontrib><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration.
Graphical Abstract
Graphical Abstract
DGLinker: flexible knowledge-graph prediction of disease-gene associations.</description><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Computer Graphics</subject><subject>Disease - genetics</subject><subject>Genes</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Software</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kL1O40AUhUcr0BKyVPTIFUJChvmzPbPFSoh_KRLNUo-ux9dmiOPxziQLdLwDb8iT4CgBQUN1i_PpO1eHkF1GjxjV4riDcNxMoZRS_yAjJnKeSp3zDTKigmYpo1Jtke0Y7yllkmXyJ9kSkvFM6WJEJmeXE9dNMfxO6hYfXdliMu38Q4tVg2kToL9L-oCVs3Pnu8TXSeUiQsTX55cGO0wgRm8dLNP4i2zW0EbcWd8xub04_3t6lU5uLq9PTyapHXrnqS241CBKQIp5DZW0nHNQCmmdF5TzSlthVY65sgiFzQSUotaVLSRTFkQtxuTPytsvyhlWFrt5gNb0wc0gPBkPznxNOndnGv_fKJ7zgqtBcLAWBP9vgXFuZi5abFvo0C-i4ZlkgjOh9YAerlAbfIwB648aRs1yfzPsb9b7D_Te588-2PfBB2B_BfhF_63pDVkTkrM</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Hu, Jiajing</creator><creator>Lepore, Rosalba</creator><creator>Dobson, Richard J B</creator><creator>Al-Chalabi, Ammar</creator><creator>M. Bean, Daniel</creator><creator>Iacoangeli, Alfredo</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5280-5017</orcidid><orcidid>https://orcid.org/0000-0002-4924-7712</orcidid></search><sort><creationdate>20210702</creationdate><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><author>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Computer Graphics</topic><topic>Disease - genetics</topic><topic>Genes</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Software</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiajing</creatorcontrib><creatorcontrib>Lepore, Rosalba</creatorcontrib><creatorcontrib>Dobson, Richard J B</creatorcontrib><creatorcontrib>Al-Chalabi, Ammar</creatorcontrib><creatorcontrib>M. Bean, Daniel</creatorcontrib><creatorcontrib>Iacoangeli, Alfredo</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiajing</au><au>Lepore, Rosalba</au><au>Dobson, Richard J B</au><au>Al-Chalabi, Ammar</au><au>M. Bean, Daniel</au><au>Iacoangeli, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DGLinker: flexible knowledge-graph prediction of disease–gene associations</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-07-02</date><risdate>2021</risdate><volume>49</volume><issue>W1</issue><spage>W153</spage><epage>W161</epage><pages>W153-W161</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract
As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration.
Graphical Abstract
Graphical Abstract
DGLinker: flexible knowledge-graph prediction of disease-gene associations.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34125897</pmid><doi>10.1093/nar/gkab449</doi><orcidid>https://orcid.org/0000-0002-5280-5017</orcidid><orcidid>https://orcid.org/0000-0002-4924-7712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2021-07, Vol.49 (W1), p.W153-W161 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8262728 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amyotrophic Lateral Sclerosis - genetics Computer Graphics Disease - genetics Genes Humans Machine Learning Software Web Server Issue |
title | DGLinker: flexible knowledge-graph prediction of disease–gene associations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DGLinker:%20flexible%20knowledge-graph%20prediction%20of%20disease%E2%80%93gene%20associations&rft.jtitle=Nucleic%20acids%20research&rft.au=Hu,%20Jiajing&rft.date=2021-07-02&rft.volume=49&rft.issue=W1&rft.spage=W153&rft.epage=W161&rft.pages=W153-W161&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab449&rft_dat=%3Cproquest_pubme%3E2541321399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541321399&rft_id=info:pmid/34125897&rft_oup_id=10.1093/nar/gkab449&rfr_iscdi=true |