DGLinker: flexible knowledge-graph prediction of disease–gene associations

Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-07, Vol.49 (W1), p.W153-W161
Hauptverfasser: Hu, Jiajing, Lepore, Rosalba, Dobson, Richard J B, Al-Chalabi, Ammar, M. Bean, Daniel, Iacoangeli, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W161
container_issue W1
container_start_page W153
container_title Nucleic acids research
container_volume 49
creator Hu, Jiajing
Lepore, Rosalba
Dobson, Richard J B
Al-Chalabi, Ammar
M. Bean, Daniel
Iacoangeli, Alfredo
description Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration. Graphical Abstract Graphical Abstract DGLinker: flexible knowledge-graph prediction of disease-gene associations.
doi_str_mv 10.1093/nar/gkab449
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8262728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab449</oup_id><sourcerecordid>2541321399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</originalsourceid><addsrcrecordid>eNp9kL1O40AUhUcr0BKyVPTIFUJChvmzPbPFSoh_KRLNUo-ux9dmiOPxziQLdLwDb8iT4CgBQUN1i_PpO1eHkF1GjxjV4riDcNxMoZRS_yAjJnKeSp3zDTKigmYpo1Jtke0Y7yllkmXyJ9kSkvFM6WJEJmeXE9dNMfxO6hYfXdliMu38Q4tVg2kToL9L-oCVs3Pnu8TXSeUiQsTX55cGO0wgRm8dLNP4i2zW0EbcWd8xub04_3t6lU5uLq9PTyapHXrnqS241CBKQIp5DZW0nHNQCmmdF5TzSlthVY65sgiFzQSUotaVLSRTFkQtxuTPytsvyhlWFrt5gNb0wc0gPBkPznxNOndnGv_fKJ7zgqtBcLAWBP9vgXFuZi5abFvo0C-i4ZlkgjOh9YAerlAbfIwB648aRs1yfzPsb9b7D_Te588-2PfBB2B_BfhF_63pDVkTkrM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541321399</pqid></control><display><type>article</type><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</creator><creatorcontrib>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</creatorcontrib><description>Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration. Graphical Abstract Graphical Abstract DGLinker: flexible knowledge-graph prediction of disease-gene associations.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab449</identifier><identifier>PMID: 34125897</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amyotrophic Lateral Sclerosis - genetics ; Computer Graphics ; Disease - genetics ; Genes ; Humans ; Machine Learning ; Software ; Web Server Issue</subject><ispartof>Nucleic acids research, 2021-07, Vol.49 (W1), p.W153-W161</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</citedby><cites>FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</cites><orcidid>0000-0002-5280-5017 ; 0000-0002-4924-7712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262728/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262728/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34125897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jiajing</creatorcontrib><creatorcontrib>Lepore, Rosalba</creatorcontrib><creatorcontrib>Dobson, Richard J B</creatorcontrib><creatorcontrib>Al-Chalabi, Ammar</creatorcontrib><creatorcontrib>M. Bean, Daniel</creatorcontrib><creatorcontrib>Iacoangeli, Alfredo</creatorcontrib><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration. Graphical Abstract Graphical Abstract DGLinker: flexible knowledge-graph prediction of disease-gene associations.</description><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Computer Graphics</subject><subject>Disease - genetics</subject><subject>Genes</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Software</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kL1O40AUhUcr0BKyVPTIFUJChvmzPbPFSoh_KRLNUo-ux9dmiOPxziQLdLwDb8iT4CgBQUN1i_PpO1eHkF1GjxjV4riDcNxMoZRS_yAjJnKeSp3zDTKigmYpo1Jtke0Y7yllkmXyJ9kSkvFM6WJEJmeXE9dNMfxO6hYfXdliMu38Q4tVg2kToL9L-oCVs3Pnu8TXSeUiQsTX55cGO0wgRm8dLNP4i2zW0EbcWd8xub04_3t6lU5uLq9PTyapHXrnqS241CBKQIp5DZW0nHNQCmmdF5TzSlthVY65sgiFzQSUotaVLSRTFkQtxuTPytsvyhlWFrt5gNb0wc0gPBkPznxNOndnGv_fKJ7zgqtBcLAWBP9vgXFuZi5abFvo0C-i4ZlkgjOh9YAerlAbfIwB648aRs1yfzPsb9b7D_Te588-2PfBB2B_BfhF_63pDVkTkrM</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Hu, Jiajing</creator><creator>Lepore, Rosalba</creator><creator>Dobson, Richard J B</creator><creator>Al-Chalabi, Ammar</creator><creator>M. Bean, Daniel</creator><creator>Iacoangeli, Alfredo</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5280-5017</orcidid><orcidid>https://orcid.org/0000-0002-4924-7712</orcidid></search><sort><creationdate>20210702</creationdate><title>DGLinker: flexible knowledge-graph prediction of disease–gene associations</title><author>Hu, Jiajing ; Lepore, Rosalba ; Dobson, Richard J B ; Al-Chalabi, Ammar ; M. Bean, Daniel ; Iacoangeli, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c7249a3bae0e6fad4c222a88e0f67022d9c3c86e68cea7c53ab3f9dc7418ca3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Computer Graphics</topic><topic>Disease - genetics</topic><topic>Genes</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Software</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiajing</creatorcontrib><creatorcontrib>Lepore, Rosalba</creatorcontrib><creatorcontrib>Dobson, Richard J B</creatorcontrib><creatorcontrib>Al-Chalabi, Ammar</creatorcontrib><creatorcontrib>M. Bean, Daniel</creatorcontrib><creatorcontrib>Iacoangeli, Alfredo</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiajing</au><au>Lepore, Rosalba</au><au>Dobson, Richard J B</au><au>Al-Chalabi, Ammar</au><au>M. Bean, Daniel</au><au>Iacoangeli, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DGLinker: flexible knowledge-graph prediction of disease–gene associations</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-07-02</date><risdate>2021</risdate><volume>49</volume><issue>W1</issue><spage>W153</spage><epage>W161</epage><pages>W153-W161</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration. Graphical Abstract Graphical Abstract DGLinker: flexible knowledge-graph prediction of disease-gene associations.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34125897</pmid><doi>10.1093/nar/gkab449</doi><orcidid>https://orcid.org/0000-0002-5280-5017</orcidid><orcidid>https://orcid.org/0000-0002-4924-7712</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-07, Vol.49 (W1), p.W153-W161
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8262728
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amyotrophic Lateral Sclerosis - genetics
Computer Graphics
Disease - genetics
Genes
Humans
Machine Learning
Software
Web Server Issue
title DGLinker: flexible knowledge-graph prediction of disease–gene associations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DGLinker:%20flexible%20knowledge-graph%20prediction%20of%20disease%E2%80%93gene%20associations&rft.jtitle=Nucleic%20acids%20research&rft.au=Hu,%20Jiajing&rft.date=2021-07-02&rft.volume=49&rft.issue=W1&rft.spage=W153&rft.epage=W161&rft.pages=W153-W161&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab449&rft_dat=%3Cproquest_pubme%3E2541321399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541321399&rft_id=info:pmid/34125897&rft_oup_id=10.1093/nar/gkab449&rfr_iscdi=true