Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae

Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2021-07, Vol.186 (3), p.1455-1472
Hauptverfasser: Moulin, Solène L Y, Beyly-Adriano, Audrey, Cuiné, Stéphan, Blangy, Stéphanie, Légeret, Bertrand, Floriani, Magali, Burlacot, Adrien, Sorigué, Damien, Samire, Poutoum-Palakiyem, Li-Beisson, Yonghua, Peltier, Gilles, Beisson, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1472
container_issue 3
container_start_page 1455
container_title Plant physiology (Bethesda)
container_volume 186
creator Moulin, Solène L Y
Beyly-Adriano, Audrey
Cuiné, Stéphan
Blangy, Stéphanie
Légeret, Bertrand
Floriani, Magali
Burlacot, Adrien
Sorigué, Damien
Samire, Poutoum-Palakiyem
Li-Beisson, Yonghua
Peltier, Gilles
Beisson, Fred
description Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.
doi_str_mv 10.1093/plphys/kiab168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513246531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</originalsourceid><addsrcrecordid>eNpdUUlP3DAYtSpQGaDXHisf4TDgLY5zqYQQFKSReoGz5ZUYkji1M4jw65uQAZVKlmz5Ld-zHwDfMTrDqKLnfdPXYz5_CkpjLr6AFS4oWZOCiT2wQmg6IyGqA3CY8yNCCFPMvoIDSkXBGUcr8HithmGEygQL-zoO0Tqjko4vY6OygyFD1U3LBNcNC8F1r2Pr4FCrAfqY2gzr0ab4puoyDN0EzfBk8BSDzTB6qJoH5Y7BvldNdt92-xG4v766u7xZb37_ur282KwN49WwLom2vHTCzsGxN544p5VhBS659h6jknFaeeG109YzXCpXWm0qbkkpEMX0CPxcfPutbp01U_KkGtmn0Ko0yqiC_Ix0oZYP8VkKwqcPEpPB6WJQ_ye7udjI-Q5RhkiJiud52MluWIp_ti4Psg3ZuKZRnYvbLEmBKWG8eMt1tlBNijkn5z-8MZJzmXIpU-7KnAQ__n3IB_29PfoXTdqgtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513246531</pqid></control><display><type>article</type><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</creator><creatorcontrib>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</creatorcontrib><description>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that &gt;90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab168</identifier><identifier>PMID: 33856460</identifier><language>eng</language><publisher>United States: Oxford University Press ; American Society of Plant Biologists</publisher><subject>Biochemistry ; Biochemistry, Molecular Biology ; Botanics ; Carboxy-Lyases - metabolism ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Genotype ; Life Sciences ; Light ; Microalgae - genetics ; Microalgae - metabolism ; Mutation ; Photochemical Processes ; Thylakoids - genetics ; Thylakoids - metabolism ; Vegetal Biology</subject><ispartof>Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1455-1472</ispartof><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</citedby><cites>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</cites><orcidid>0000-0003-1064-1816 ; 0000-0001-7434-6416 ; 0000-0002-3000-3355 ; 0000-0002-0957-4700 ; 0000-0001-5394-4695 ; 0000-0001-9995-7387 ; 0000-0002-2226-3931 ; 0000-0001-5461-0486 ; 0000-0003-1149-0757 ; 0000-0003-1555-6266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03402705$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moulin, Solène L Y</creatorcontrib><creatorcontrib>Beyly-Adriano, Audrey</creatorcontrib><creatorcontrib>Cuiné, Stéphan</creatorcontrib><creatorcontrib>Blangy, Stéphanie</creatorcontrib><creatorcontrib>Légeret, Bertrand</creatorcontrib><creatorcontrib>Floriani, Magali</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><creatorcontrib>Sorigué, Damien</creatorcontrib><creatorcontrib>Samire, Poutoum-Palakiyem</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Beisson, Fred</creatorcontrib><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that &gt;90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</description><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Botanics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microalgae - genetics</subject><subject>Microalgae - metabolism</subject><subject>Mutation</subject><subject>Photochemical Processes</subject><subject>Thylakoids - genetics</subject><subject>Thylakoids - metabolism</subject><subject>Vegetal Biology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUUlP3DAYtSpQGaDXHisf4TDgLY5zqYQQFKSReoGz5ZUYkji1M4jw65uQAZVKlmz5Ld-zHwDfMTrDqKLnfdPXYz5_CkpjLr6AFS4oWZOCiT2wQmg6IyGqA3CY8yNCCFPMvoIDSkXBGUcr8HithmGEygQL-zoO0Tqjko4vY6OygyFD1U3LBNcNC8F1r2Pr4FCrAfqY2gzr0ab4puoyDN0EzfBk8BSDzTB6qJoH5Y7BvldNdt92-xG4v766u7xZb37_ur282KwN49WwLom2vHTCzsGxN544p5VhBS659h6jknFaeeG109YzXCpXWm0qbkkpEMX0CPxcfPutbp01U_KkGtmn0Ko0yqiC_Ix0oZYP8VkKwqcPEpPB6WJQ_ye7udjI-Q5RhkiJiud52MluWIp_ti4Psg3ZuKZRnYvbLEmBKWG8eMt1tlBNijkn5z-8MZJzmXIpU-7KnAQ__n3IB_29PfoXTdqgtg</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Moulin, Solène L Y</creator><creator>Beyly-Adriano, Audrey</creator><creator>Cuiné, Stéphan</creator><creator>Blangy, Stéphanie</creator><creator>Légeret, Bertrand</creator><creator>Floriani, Magali</creator><creator>Burlacot, Adrien</creator><creator>Sorigué, Damien</creator><creator>Samire, Poutoum-Palakiyem</creator><creator>Li-Beisson, Yonghua</creator><creator>Peltier, Gilles</creator><creator>Beisson, Fred</creator><general>Oxford University Press ; American Society of Plant Biologists</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0001-7434-6416</orcidid><orcidid>https://orcid.org/0000-0002-3000-3355</orcidid><orcidid>https://orcid.org/0000-0002-0957-4700</orcidid><orcidid>https://orcid.org/0000-0001-5394-4695</orcidid><orcidid>https://orcid.org/0000-0001-9995-7387</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0001-5461-0486</orcidid><orcidid>https://orcid.org/0000-0003-1149-0757</orcidid><orcidid>https://orcid.org/0000-0003-1555-6266</orcidid></search><sort><creationdate>20210706</creationdate><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><author>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Botanics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microalgae - genetics</topic><topic>Microalgae - metabolism</topic><topic>Mutation</topic><topic>Photochemical Processes</topic><topic>Thylakoids - genetics</topic><topic>Thylakoids - metabolism</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulin, Solène L Y</creatorcontrib><creatorcontrib>Beyly-Adriano, Audrey</creatorcontrib><creatorcontrib>Cuiné, Stéphan</creatorcontrib><creatorcontrib>Blangy, Stéphanie</creatorcontrib><creatorcontrib>Légeret, Bertrand</creatorcontrib><creatorcontrib>Floriani, Magali</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><creatorcontrib>Sorigué, Damien</creatorcontrib><creatorcontrib>Samire, Poutoum-Palakiyem</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Beisson, Fred</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulin, Solène L Y</au><au>Beyly-Adriano, Audrey</au><au>Cuiné, Stéphan</au><au>Blangy, Stéphanie</au><au>Légeret, Bertrand</au><au>Floriani, Magali</au><au>Burlacot, Adrien</au><au>Sorigué, Damien</au><au>Samire, Poutoum-Palakiyem</au><au>Li-Beisson, Yonghua</au><au>Peltier, Gilles</au><au>Beisson, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>186</volume><issue>3</issue><spage>1455</spage><epage>1472</epage><pages>1455-1472</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that &gt;90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</abstract><cop>United States</cop><pub>Oxford University Press ; American Society of Plant Biologists</pub><pmid>33856460</pmid><doi>10.1093/plphys/kiab168</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0001-7434-6416</orcidid><orcidid>https://orcid.org/0000-0002-3000-3355</orcidid><orcidid>https://orcid.org/0000-0002-0957-4700</orcidid><orcidid>https://orcid.org/0000-0001-5394-4695</orcidid><orcidid>https://orcid.org/0000-0001-9995-7387</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0001-5461-0486</orcidid><orcidid>https://orcid.org/0000-0003-1149-0757</orcidid><orcidid>https://orcid.org/0000-0003-1555-6266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1455-1472
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260138
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Biochemistry
Biochemistry, Molecular Biology
Botanics
Carboxy-Lyases - metabolism
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Fatty Acids - genetics
Fatty Acids - metabolism
Gene Expression Regulation, Plant
Genes, Plant
Genetic Variation
Genotype
Life Sciences
Light
Microalgae - genetics
Microalgae - metabolism
Mutation
Photochemical Processes
Thylakoids - genetics
Thylakoids - metabolism
Vegetal Biology
title Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatty%20acid%20photodecarboxylase%20is%20an%20ancient%20photoenzyme%20that%20forms%20hydrocarbons%20in%20the%20thylakoids%20of%20algae&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Moulin,%20Sol%C3%A8ne%20L%20Y&rft.date=2021-07-06&rft.volume=186&rft.issue=3&rft.spage=1455&rft.epage=1472&rft.pages=1455-1472&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab168&rft_dat=%3Cproquest_pubme%3E2513246531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513246531&rft_id=info:pmid/33856460&rfr_iscdi=true