Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae
Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2021-07, Vol.186 (3), p.1455-1472 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1472 |
---|---|
container_issue | 3 |
container_start_page | 1455 |
container_title | Plant physiology (Bethesda) |
container_volume | 186 |
creator | Moulin, Solène L Y Beyly-Adriano, Audrey Cuiné, Stéphan Blangy, Stéphanie Légeret, Bertrand Floriani, Magali Burlacot, Adrien Sorigué, Damien Samire, Poutoum-Palakiyem Li-Beisson, Yonghua Peltier, Gilles Beisson, Fred |
description | Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes. |
doi_str_mv | 10.1093/plphys/kiab168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513246531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</originalsourceid><addsrcrecordid>eNpdUUlP3DAYtSpQGaDXHisf4TDgLY5zqYQQFKSReoGz5ZUYkji1M4jw65uQAZVKlmz5Ld-zHwDfMTrDqKLnfdPXYz5_CkpjLr6AFS4oWZOCiT2wQmg6IyGqA3CY8yNCCFPMvoIDSkXBGUcr8HithmGEygQL-zoO0Tqjko4vY6OygyFD1U3LBNcNC8F1r2Pr4FCrAfqY2gzr0ab4puoyDN0EzfBk8BSDzTB6qJoH5Y7BvldNdt92-xG4v766u7xZb37_ur282KwN49WwLom2vHTCzsGxN544p5VhBS659h6jknFaeeG109YzXCpXWm0qbkkpEMX0CPxcfPutbp01U_KkGtmn0Ko0yqiC_Ix0oZYP8VkKwqcPEpPB6WJQ_ye7udjI-Q5RhkiJiud52MluWIp_ti4Psg3ZuKZRnYvbLEmBKWG8eMt1tlBNijkn5z-8MZJzmXIpU-7KnAQ__n3IB_29PfoXTdqgtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513246531</pqid></control><display><type>article</type><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</creator><creatorcontrib>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</creatorcontrib><description>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab168</identifier><identifier>PMID: 33856460</identifier><language>eng</language><publisher>United States: Oxford University Press ; American Society of Plant Biologists</publisher><subject>Biochemistry ; Biochemistry, Molecular Biology ; Botanics ; Carboxy-Lyases - metabolism ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Genotype ; Life Sciences ; Light ; Microalgae - genetics ; Microalgae - metabolism ; Mutation ; Photochemical Processes ; Thylakoids - genetics ; Thylakoids - metabolism ; Vegetal Biology</subject><ispartof>Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1455-1472</ispartof><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</citedby><cites>FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</cites><orcidid>0000-0003-1064-1816 ; 0000-0001-7434-6416 ; 0000-0002-3000-3355 ; 0000-0002-0957-4700 ; 0000-0001-5394-4695 ; 0000-0001-9995-7387 ; 0000-0002-2226-3931 ; 0000-0001-5461-0486 ; 0000-0003-1149-0757 ; 0000-0003-1555-6266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03402705$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moulin, Solène L Y</creatorcontrib><creatorcontrib>Beyly-Adriano, Audrey</creatorcontrib><creatorcontrib>Cuiné, Stéphan</creatorcontrib><creatorcontrib>Blangy, Stéphanie</creatorcontrib><creatorcontrib>Légeret, Bertrand</creatorcontrib><creatorcontrib>Floriani, Magali</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><creatorcontrib>Sorigué, Damien</creatorcontrib><creatorcontrib>Samire, Poutoum-Palakiyem</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Beisson, Fred</creatorcontrib><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</description><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Botanics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microalgae - genetics</subject><subject>Microalgae - metabolism</subject><subject>Mutation</subject><subject>Photochemical Processes</subject><subject>Thylakoids - genetics</subject><subject>Thylakoids - metabolism</subject><subject>Vegetal Biology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUUlP3DAYtSpQGaDXHisf4TDgLY5zqYQQFKSReoGz5ZUYkji1M4jw65uQAZVKlmz5Ld-zHwDfMTrDqKLnfdPXYz5_CkpjLr6AFS4oWZOCiT2wQmg6IyGqA3CY8yNCCFPMvoIDSkXBGUcr8HithmGEygQL-zoO0Tqjko4vY6OygyFD1U3LBNcNC8F1r2Pr4FCrAfqY2gzr0ab4puoyDN0EzfBk8BSDzTB6qJoH5Y7BvldNdt92-xG4v766u7xZb37_ur282KwN49WwLom2vHTCzsGxN544p5VhBS659h6jknFaeeG109YzXCpXWm0qbkkpEMX0CPxcfPutbp01U_KkGtmn0Ko0yqiC_Ix0oZYP8VkKwqcPEpPB6WJQ_ye7udjI-Q5RhkiJiud52MluWIp_ti4Psg3ZuKZRnYvbLEmBKWG8eMt1tlBNijkn5z-8MZJzmXIpU-7KnAQ__n3IB_29PfoXTdqgtg</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Moulin, Solène L Y</creator><creator>Beyly-Adriano, Audrey</creator><creator>Cuiné, Stéphan</creator><creator>Blangy, Stéphanie</creator><creator>Légeret, Bertrand</creator><creator>Floriani, Magali</creator><creator>Burlacot, Adrien</creator><creator>Sorigué, Damien</creator><creator>Samire, Poutoum-Palakiyem</creator><creator>Li-Beisson, Yonghua</creator><creator>Peltier, Gilles</creator><creator>Beisson, Fred</creator><general>Oxford University Press ; American Society of Plant Biologists</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0001-7434-6416</orcidid><orcidid>https://orcid.org/0000-0002-3000-3355</orcidid><orcidid>https://orcid.org/0000-0002-0957-4700</orcidid><orcidid>https://orcid.org/0000-0001-5394-4695</orcidid><orcidid>https://orcid.org/0000-0001-9995-7387</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0001-5461-0486</orcidid><orcidid>https://orcid.org/0000-0003-1149-0757</orcidid><orcidid>https://orcid.org/0000-0003-1555-6266</orcidid></search><sort><creationdate>20210706</creationdate><title>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</title><author>Moulin, Solène L Y ; Beyly-Adriano, Audrey ; Cuiné, Stéphan ; Blangy, Stéphanie ; Légeret, Bertrand ; Floriani, Magali ; Burlacot, Adrien ; Sorigué, Damien ; Samire, Poutoum-Palakiyem ; Li-Beisson, Yonghua ; Peltier, Gilles ; Beisson, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-72bd67e8d08891fcf2eebac45176bff1074639f8fbebdf417ae7dbc96d2780313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Botanics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microalgae - genetics</topic><topic>Microalgae - metabolism</topic><topic>Mutation</topic><topic>Photochemical Processes</topic><topic>Thylakoids - genetics</topic><topic>Thylakoids - metabolism</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulin, Solène L Y</creatorcontrib><creatorcontrib>Beyly-Adriano, Audrey</creatorcontrib><creatorcontrib>Cuiné, Stéphan</creatorcontrib><creatorcontrib>Blangy, Stéphanie</creatorcontrib><creatorcontrib>Légeret, Bertrand</creatorcontrib><creatorcontrib>Floriani, Magali</creatorcontrib><creatorcontrib>Burlacot, Adrien</creatorcontrib><creatorcontrib>Sorigué, Damien</creatorcontrib><creatorcontrib>Samire, Poutoum-Palakiyem</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>Beisson, Fred</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulin, Solène L Y</au><au>Beyly-Adriano, Audrey</au><au>Cuiné, Stéphan</au><au>Blangy, Stéphanie</au><au>Légeret, Bertrand</au><au>Floriani, Magali</au><au>Burlacot, Adrien</au><au>Sorigué, Damien</au><au>Samire, Poutoum-Palakiyem</au><au>Li-Beisson, Yonghua</au><au>Peltier, Gilles</au><au>Beisson, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>186</volume><issue>3</issue><spage>1455</spage><epage>1472</epage><pages>1455-1472</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.</abstract><cop>United States</cop><pub>Oxford University Press ; American Society of Plant Biologists</pub><pmid>33856460</pmid><doi>10.1093/plphys/kiab168</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0001-7434-6416</orcidid><orcidid>https://orcid.org/0000-0002-3000-3355</orcidid><orcidid>https://orcid.org/0000-0002-0957-4700</orcidid><orcidid>https://orcid.org/0000-0001-5394-4695</orcidid><orcidid>https://orcid.org/0000-0001-9995-7387</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0001-5461-0486</orcidid><orcidid>https://orcid.org/0000-0003-1149-0757</orcidid><orcidid>https://orcid.org/0000-0003-1555-6266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1455-1472 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260138 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Biochemistry Biochemistry, Molecular Biology Botanics Carboxy-Lyases - metabolism Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Fatty Acids - genetics Fatty Acids - metabolism Gene Expression Regulation, Plant Genes, Plant Genetic Variation Genotype Life Sciences Light Microalgae - genetics Microalgae - metabolism Mutation Photochemical Processes Thylakoids - genetics Thylakoids - metabolism Vegetal Biology |
title | Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatty%20acid%20photodecarboxylase%20is%20an%20ancient%20photoenzyme%20that%20forms%20hydrocarbons%20in%20the%20thylakoids%20of%20algae&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Moulin,%20Sol%C3%A8ne%20L%20Y&rft.date=2021-07-06&rft.volume=186&rft.issue=3&rft.spage=1455&rft.epage=1472&rft.pages=1455-1472&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab168&rft_dat=%3Cproquest_pubme%3E2513246531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513246531&rft_id=info:pmid/33856460&rfr_iscdi=true |