Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum

Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in availa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2021-07, Vol.186 (3), p.1562-1579
Hauptverfasser: Bheemanahalli, Raju, Wang, Chaoxin, Bashir, Elfadil, Chiluwal, Anuj, Pokharel, Meghnath, Perumal, Ramasamy, Moghimi, Naghmeh, Ostmeyer, Troy, Caragea, Doina, Jagadish, S V Krishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 3
container_start_page 1562
container_title Plant physiology (Bethesda)
container_volume 186
creator Bheemanahalli, Raju
Wang, Chaoxin
Bashir, Elfadil
Chiluwal, Anuj
Pokharel, Meghnath
Perumal, Ramasamy
Moghimi, Naghmeh
Ostmeyer, Troy
Caragea, Doina
Jagadish, S V Krishna
description Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.
doi_str_mv 10.1093/plphys/kiab174
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513245510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</originalsourceid><addsrcrecordid>eNpVUcFuGyEURFWq2nF7zbHimIttWHbX7KVSZSVpJEu9pGf0ln3YNCxsYTeS_z64dqP0AmiYmTd6Q8gNZyvOGrEe3HA4pvWzhZZvyg9kzitRLIuqlFdkzlh-MymbGblO6TdjjAtefiIzIWRVl1LOid06SMlqcHQ4oA_jcbB-T8F3tEMcqEOI_oTo4PUUafB0jx5Hq0_IGIOjwdA0hh7G7NGhT3Y8_tVDRKDW0xTi_jD1n8lHAy7hl8u9IL_u7562P5a7nw-P2--7pRYNG5dtUzelYbLo2mZjuroVRVm10kheC8O6uoImg7XZaF7mg9UtAArJSgOG4aYQC_Lt7DtMbY-dxpwSnBqi7SEeVQCr_v_x9qD24UXJos77Edng9mIQw58J06h6mzQ6Bx7DlFRR8VOmirNMXZ2pOoaUIpq3MZypUz_q3I-69JMFX9-He6P_K0S8Altpkeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513245510</pqid></control><display><type>article</type><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</creator><creatorcontrib>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</creatorcontrib><description>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab174</identifier><identifier>PMID: 33856488</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Deep Learning ; Edible Grain - genetics ; Edible Grain - growth &amp; development ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Genome-Wide Association Study ; Genotype ; Phenotype ; Plant Leaves ; Plant Stomata - genetics ; Plant Stomata - growth &amp; development ; Sorghum - genetics ; Sorghum - growth &amp; development</subject><ispartof>Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1562-1579</ispartof><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</citedby><cites>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</cites><orcidid>0000-0002-2330-5291 ; 0000-0002-0649-8853 ; 0000-0002-3973-5886 ; 0000-0002-3793-729X ; 0000-0002-2076-5946 ; 0000-0002-6440-0914 ; 0000-0002-9325-4901 ; 0000-0002-1501-0960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bheemanahalli, Raju</creatorcontrib><creatorcontrib>Wang, Chaoxin</creatorcontrib><creatorcontrib>Bashir, Elfadil</creatorcontrib><creatorcontrib>Chiluwal, Anuj</creatorcontrib><creatorcontrib>Pokharel, Meghnath</creatorcontrib><creatorcontrib>Perumal, Ramasamy</creatorcontrib><creatorcontrib>Moghimi, Naghmeh</creatorcontrib><creatorcontrib>Ostmeyer, Troy</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Jagadish, S V Krishna</creatorcontrib><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</description><subject>Deep Learning</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - growth &amp; development</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Variation</subject><subject>Genome-Wide Association Study</subject><subject>Genotype</subject><subject>Phenotype</subject><subject>Plant Leaves</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - growth &amp; development</subject><subject>Sorghum - genetics</subject><subject>Sorghum - growth &amp; development</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFuGyEURFWq2nF7zbHimIttWHbX7KVSZSVpJEu9pGf0ln3YNCxsYTeS_z64dqP0AmiYmTd6Q8gNZyvOGrEe3HA4pvWzhZZvyg9kzitRLIuqlFdkzlh-MymbGblO6TdjjAtefiIzIWRVl1LOid06SMlqcHQ4oA_jcbB-T8F3tEMcqEOI_oTo4PUUafB0jx5Hq0_IGIOjwdA0hh7G7NGhT3Y8_tVDRKDW0xTi_jD1n8lHAy7hl8u9IL_u7562P5a7nw-P2--7pRYNG5dtUzelYbLo2mZjuroVRVm10kheC8O6uoImg7XZaF7mg9UtAArJSgOG4aYQC_Lt7DtMbY-dxpwSnBqi7SEeVQCr_v_x9qD24UXJos77Edng9mIQw58J06h6mzQ6Bx7DlFRR8VOmirNMXZ2pOoaUIpq3MZypUz_q3I-69JMFX9-He6P_K0S8Altpkeg</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Bheemanahalli, Raju</creator><creator>Wang, Chaoxin</creator><creator>Bashir, Elfadil</creator><creator>Chiluwal, Anuj</creator><creator>Pokharel, Meghnath</creator><creator>Perumal, Ramasamy</creator><creator>Moghimi, Naghmeh</creator><creator>Ostmeyer, Troy</creator><creator>Caragea, Doina</creator><creator>Jagadish, S V Krishna</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2330-5291</orcidid><orcidid>https://orcid.org/0000-0002-0649-8853</orcidid><orcidid>https://orcid.org/0000-0002-3973-5886</orcidid><orcidid>https://orcid.org/0000-0002-3793-729X</orcidid><orcidid>https://orcid.org/0000-0002-2076-5946</orcidid><orcidid>https://orcid.org/0000-0002-6440-0914</orcidid><orcidid>https://orcid.org/0000-0002-9325-4901</orcidid><orcidid>https://orcid.org/0000-0002-1501-0960</orcidid></search><sort><creationdate>20210706</creationdate><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><author>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep Learning</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - growth &amp; development</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Variation</topic><topic>Genome-Wide Association Study</topic><topic>Genotype</topic><topic>Phenotype</topic><topic>Plant Leaves</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - growth &amp; development</topic><topic>Sorghum - genetics</topic><topic>Sorghum - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bheemanahalli, Raju</creatorcontrib><creatorcontrib>Wang, Chaoxin</creatorcontrib><creatorcontrib>Bashir, Elfadil</creatorcontrib><creatorcontrib>Chiluwal, Anuj</creatorcontrib><creatorcontrib>Pokharel, Meghnath</creatorcontrib><creatorcontrib>Perumal, Ramasamy</creatorcontrib><creatorcontrib>Moghimi, Naghmeh</creatorcontrib><creatorcontrib>Ostmeyer, Troy</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Jagadish, S V Krishna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bheemanahalli, Raju</au><au>Wang, Chaoxin</au><au>Bashir, Elfadil</au><au>Chiluwal, Anuj</au><au>Pokharel, Meghnath</au><au>Perumal, Ramasamy</au><au>Moghimi, Naghmeh</au><au>Ostmeyer, Troy</au><au>Caragea, Doina</au><au>Jagadish, S V Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>186</volume><issue>3</issue><spage>1562</spage><epage>1579</epage><pages>1562-1579</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33856488</pmid><doi>10.1093/plphys/kiab174</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2330-5291</orcidid><orcidid>https://orcid.org/0000-0002-0649-8853</orcidid><orcidid>https://orcid.org/0000-0002-3973-5886</orcidid><orcidid>https://orcid.org/0000-0002-3793-729X</orcidid><orcidid>https://orcid.org/0000-0002-2076-5946</orcidid><orcidid>https://orcid.org/0000-0002-6440-0914</orcidid><orcidid>https://orcid.org/0000-0002-9325-4901</orcidid><orcidid>https://orcid.org/0000-0002-1501-0960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1562-1579
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260133
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Deep Learning
Edible Grain - genetics
Edible Grain - growth & development
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genes, Plant
Genetic Variation
Genome-Wide Association Study
Genotype
Phenotype
Plant Leaves
Plant Stomata - genetics
Plant Stomata - growth & development
Sorghum - genetics
Sorghum - growth & development
title Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20phenotyping%20and%20deep%20learning%20concur%20on%20genetic%20control%20of%20stomatal%20density%20and%20area%20in%20sorghum&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bheemanahalli,%20Raju&rft.date=2021-07-06&rft.volume=186&rft.issue=3&rft.spage=1562&rft.epage=1579&rft.pages=1562-1579&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab174&rft_dat=%3Cproquest_pubme%3E2513245510%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513245510&rft_id=info:pmid/33856488&rfr_iscdi=true