Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum
Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in availa...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2021-07, Vol.186 (3), p.1562-1579 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 3 |
container_start_page | 1562 |
container_title | Plant physiology (Bethesda) |
container_volume | 186 |
creator | Bheemanahalli, Raju Wang, Chaoxin Bashir, Elfadil Chiluwal, Anuj Pokharel, Meghnath Perumal, Ramasamy Moghimi, Naghmeh Ostmeyer, Troy Caragea, Doina Jagadish, S V Krishna |
description | Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants. |
doi_str_mv | 10.1093/plphys/kiab174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513245510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</originalsourceid><addsrcrecordid>eNpVUcFuGyEURFWq2nF7zbHimIttWHbX7KVSZSVpJEu9pGf0ln3YNCxsYTeS_z64dqP0AmiYmTd6Q8gNZyvOGrEe3HA4pvWzhZZvyg9kzitRLIuqlFdkzlh-MymbGblO6TdjjAtefiIzIWRVl1LOid06SMlqcHQ4oA_jcbB-T8F3tEMcqEOI_oTo4PUUafB0jx5Hq0_IGIOjwdA0hh7G7NGhT3Y8_tVDRKDW0xTi_jD1n8lHAy7hl8u9IL_u7562P5a7nw-P2--7pRYNG5dtUzelYbLo2mZjuroVRVm10kheC8O6uoImg7XZaF7mg9UtAArJSgOG4aYQC_Lt7DtMbY-dxpwSnBqi7SEeVQCr_v_x9qD24UXJos77Edng9mIQw58J06h6mzQ6Bx7DlFRR8VOmirNMXZ2pOoaUIpq3MZypUz_q3I-69JMFX9-He6P_K0S8Altpkeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513245510</pqid></control><display><type>article</type><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</creator><creatorcontrib>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</creatorcontrib><description>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1093/plphys/kiab174</identifier><identifier>PMID: 33856488</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Deep Learning ; Edible Grain - genetics ; Edible Grain - growth & development ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Genome-Wide Association Study ; Genotype ; Phenotype ; Plant Leaves ; Plant Stomata - genetics ; Plant Stomata - growth & development ; Sorghum - genetics ; Sorghum - growth & development</subject><ispartof>Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1562-1579</ispartof><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>American Society of Plant Biologists 2021. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</citedby><cites>FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</cites><orcidid>0000-0002-2330-5291 ; 0000-0002-0649-8853 ; 0000-0002-3973-5886 ; 0000-0002-3793-729X ; 0000-0002-2076-5946 ; 0000-0002-6440-0914 ; 0000-0002-9325-4901 ; 0000-0002-1501-0960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bheemanahalli, Raju</creatorcontrib><creatorcontrib>Wang, Chaoxin</creatorcontrib><creatorcontrib>Bashir, Elfadil</creatorcontrib><creatorcontrib>Chiluwal, Anuj</creatorcontrib><creatorcontrib>Pokharel, Meghnath</creatorcontrib><creatorcontrib>Perumal, Ramasamy</creatorcontrib><creatorcontrib>Moghimi, Naghmeh</creatorcontrib><creatorcontrib>Ostmeyer, Troy</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Jagadish, S V Krishna</creatorcontrib><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</description><subject>Deep Learning</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - growth & development</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genetic Variation</subject><subject>Genome-Wide Association Study</subject><subject>Genotype</subject><subject>Phenotype</subject><subject>Plant Leaves</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - growth & development</subject><subject>Sorghum - genetics</subject><subject>Sorghum - growth & development</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFuGyEURFWq2nF7zbHimIttWHbX7KVSZSVpJEu9pGf0ln3YNCxsYTeS_z64dqP0AmiYmTd6Q8gNZyvOGrEe3HA4pvWzhZZvyg9kzitRLIuqlFdkzlh-MymbGblO6TdjjAtefiIzIWRVl1LOid06SMlqcHQ4oA_jcbB-T8F3tEMcqEOI_oTo4PUUafB0jx5Hq0_IGIOjwdA0hh7G7NGhT3Y8_tVDRKDW0xTi_jD1n8lHAy7hl8u9IL_u7562P5a7nw-P2--7pRYNG5dtUzelYbLo2mZjuroVRVm10kheC8O6uoImg7XZaF7mg9UtAArJSgOG4aYQC_Lt7DtMbY-dxpwSnBqi7SEeVQCr_v_x9qD24UXJos77Edng9mIQw58J06h6mzQ6Bx7DlFRR8VOmirNMXZ2pOoaUIpq3MZypUz_q3I-69JMFX9-He6P_K0S8Altpkeg</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Bheemanahalli, Raju</creator><creator>Wang, Chaoxin</creator><creator>Bashir, Elfadil</creator><creator>Chiluwal, Anuj</creator><creator>Pokharel, Meghnath</creator><creator>Perumal, Ramasamy</creator><creator>Moghimi, Naghmeh</creator><creator>Ostmeyer, Troy</creator><creator>Caragea, Doina</creator><creator>Jagadish, S V Krishna</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2330-5291</orcidid><orcidid>https://orcid.org/0000-0002-0649-8853</orcidid><orcidid>https://orcid.org/0000-0002-3973-5886</orcidid><orcidid>https://orcid.org/0000-0002-3793-729X</orcidid><orcidid>https://orcid.org/0000-0002-2076-5946</orcidid><orcidid>https://orcid.org/0000-0002-6440-0914</orcidid><orcidid>https://orcid.org/0000-0002-9325-4901</orcidid><orcidid>https://orcid.org/0000-0002-1501-0960</orcidid></search><sort><creationdate>20210706</creationdate><title>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</title><author>Bheemanahalli, Raju ; Wang, Chaoxin ; Bashir, Elfadil ; Chiluwal, Anuj ; Pokharel, Meghnath ; Perumal, Ramasamy ; Moghimi, Naghmeh ; Ostmeyer, Troy ; Caragea, Doina ; Jagadish, S V Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-b9694f082db97fd6b3245b8f8163f0d65a9d6b6f7c14f7c06baae3804faf0e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep Learning</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - growth & development</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genetic Variation</topic><topic>Genome-Wide Association Study</topic><topic>Genotype</topic><topic>Phenotype</topic><topic>Plant Leaves</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - growth & development</topic><topic>Sorghum - genetics</topic><topic>Sorghum - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bheemanahalli, Raju</creatorcontrib><creatorcontrib>Wang, Chaoxin</creatorcontrib><creatorcontrib>Bashir, Elfadil</creatorcontrib><creatorcontrib>Chiluwal, Anuj</creatorcontrib><creatorcontrib>Pokharel, Meghnath</creatorcontrib><creatorcontrib>Perumal, Ramasamy</creatorcontrib><creatorcontrib>Moghimi, Naghmeh</creatorcontrib><creatorcontrib>Ostmeyer, Troy</creatorcontrib><creatorcontrib>Caragea, Doina</creatorcontrib><creatorcontrib>Jagadish, S V Krishna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bheemanahalli, Raju</au><au>Wang, Chaoxin</au><au>Bashir, Elfadil</au><au>Chiluwal, Anuj</au><au>Pokharel, Meghnath</au><au>Perumal, Ramasamy</au><au>Moghimi, Naghmeh</au><au>Ostmeyer, Troy</au><au>Caragea, Doina</au><au>Jagadish, S V Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2021-07-06</date><risdate>2021</risdate><volume>186</volume><issue>3</issue><spage>1562</spage><epage>1579</epage><pages>1562-1579</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33856488</pmid><doi>10.1093/plphys/kiab174</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2330-5291</orcidid><orcidid>https://orcid.org/0000-0002-0649-8853</orcidid><orcidid>https://orcid.org/0000-0002-3973-5886</orcidid><orcidid>https://orcid.org/0000-0002-3793-729X</orcidid><orcidid>https://orcid.org/0000-0002-2076-5946</orcidid><orcidid>https://orcid.org/0000-0002-6440-0914</orcidid><orcidid>https://orcid.org/0000-0002-9325-4901</orcidid><orcidid>https://orcid.org/0000-0002-1501-0960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2021-07, Vol.186 (3), p.1562-1579 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8260133 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Deep Learning Edible Grain - genetics Edible Grain - growth & development Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Genes, Plant Genetic Variation Genome-Wide Association Study Genotype Phenotype Plant Leaves Plant Stomata - genetics Plant Stomata - growth & development Sorghum - genetics Sorghum - growth & development |
title | Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20phenotyping%20and%20deep%20learning%20concur%20on%20genetic%20control%20of%20stomatal%20density%20and%20area%20in%20sorghum&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bheemanahalli,%20Raju&rft.date=2021-07-06&rft.volume=186&rft.issue=3&rft.spage=1562&rft.epage=1579&rft.pages=1562-1579&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1093/plphys/kiab174&rft_dat=%3Cproquest_pubme%3E2513245510%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513245510&rft_id=info:pmid/33856488&rfr_iscdi=true |