Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops

Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (26), p.1-11
Hauptverfasser: Leger, Dorian, Matassa, Silvio, Noor, Elad, Shepon, Alon, Milo, Ron, Bar-Even, Arren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 26
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Leger, Dorian
Matassa, Silvio
Noor, Elad
Shepon, Alon
Milo, Ron
Bar-Even, Arren
description Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.
doi_str_mv 10.1073/pnas.2015025118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8255800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040824</jstor_id><sourcerecordid>27040824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EotvCmRMoEpde0o5fiX1BqipeUiU4wNny2k7Xq8QOtrNS_3sctiyPw2gO85tPM9-H0CsMVxh6ej0Hna8IYA6EYyyeoA0GiduOSXiKNgCkbwUj7Ayd57wHAMkFPEdnlGHOQYoNyl93scRDHIv2prXJH1xoJm9S3Ho9NnOKxfmwdruY4mNojA7Nkl0z6mCbtfISRn-_K80Uk2vcMHjjXSjjQ1N2lTUxVM11tepV3Tm_QM8GPWb38rFfoO8f3n-7_dTeffn4-fbmrjWM0dJK4Jr0QLpOD1pajAmnA6NysECA9k52zHa8c663W9xLYq0dsBNOGEo7Ixi9QO-OuvOynZw19YqkRzUnP-n0oKL26t9J8Dt1Hw9KEF59gipw-SiQ4o_F5aImn40b6-suLlkRzqqRfXWzom__Q_dxSfXlX5TsSVdzqdT1kao-5JzccDoGg1oDVWug6k-gdePN3z-c-N8JVuD1EdjnEtNpXo1jIAijPwFU36jZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549726091</pqid></control><display><type>article</type><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</creator><creatorcontrib>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</creatorcontrib><description>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2015025118</identifier><identifier>PMID: 34155098</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agricultural production ; Animals ; Bacterial Proteins - biosynthesis ; Biological Sciences ; Biomass ; Carbon dioxide ; Carbon sequestration ; Carbon sources ; Crop yield ; Crops, Agricultural - growth &amp; development ; Dietary Proteins - metabolism ; Dietary supplements ; Energy Transfer ; Humans ; Land use ; Microorganisms ; Natural resources ; Photovoltaics ; Population growth ; Protein folding ; Proteins ; Quantitative analysis ; Single-cell protein ; Solar Energy ; Sunlight ; Traditional farming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (26), p.1-11</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 29, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</citedby><cites>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</cites><orcidid>0000-0001-7232-6331 ; 0000-0003-1641-2299 ; 0000-0002-1039-4328 ; 0000-0002-4492-2766 ; 0000-0002-4345-8957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040824$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040824$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34155098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leger, Dorian</creatorcontrib><creatorcontrib>Matassa, Silvio</creatorcontrib><creatorcontrib>Noor, Elad</creatorcontrib><creatorcontrib>Shepon, Alon</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Bar-Even, Arren</creatorcontrib><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</description><subject>Agricultural production</subject><subject>Animals</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>Crop yield</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Dietary Proteins - metabolism</subject><subject>Dietary supplements</subject><subject>Energy Transfer</subject><subject>Humans</subject><subject>Land use</subject><subject>Microorganisms</subject><subject>Natural resources</subject><subject>Photovoltaics</subject><subject>Population growth</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Single-cell protein</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Traditional farming</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctv1DAQxi0EotvCmRMoEpde0o5fiX1BqipeUiU4wNny2k7Xq8QOtrNS_3sctiyPw2gO85tPM9-H0CsMVxh6ej0Hna8IYA6EYyyeoA0GiduOSXiKNgCkbwUj7Ayd57wHAMkFPEdnlGHOQYoNyl93scRDHIv2prXJH1xoJm9S3Ho9NnOKxfmwdruY4mNojA7Nkl0z6mCbtfISRn-_K80Uk2vcMHjjXSjjQ1N2lTUxVM11tepV3Tm_QM8GPWb38rFfoO8f3n-7_dTeffn4-fbmrjWM0dJK4Jr0QLpOD1pajAmnA6NysECA9k52zHa8c663W9xLYq0dsBNOGEo7Ixi9QO-OuvOynZw19YqkRzUnP-n0oKL26t9J8Dt1Hw9KEF59gipw-SiQ4o_F5aImn40b6-suLlkRzqqRfXWzom__Q_dxSfXlX5TsSVdzqdT1kao-5JzccDoGg1oDVWug6k-gdePN3z-c-N8JVuD1EdjnEtNpXo1jIAijPwFU36jZ</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Leger, Dorian</creator><creator>Matassa, Silvio</creator><creator>Noor, Elad</creator><creator>Shepon, Alon</creator><creator>Milo, Ron</creator><creator>Bar-Even, Arren</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7232-6331</orcidid><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-1039-4328</orcidid><orcidid>https://orcid.org/0000-0002-4492-2766</orcidid><orcidid>https://orcid.org/0000-0002-4345-8957</orcidid></search><sort><creationdate>20210629</creationdate><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><author>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Animals</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>Crop yield</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Dietary Proteins - metabolism</topic><topic>Dietary supplements</topic><topic>Energy Transfer</topic><topic>Humans</topic><topic>Land use</topic><topic>Microorganisms</topic><topic>Natural resources</topic><topic>Photovoltaics</topic><topic>Population growth</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Single-cell protein</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Traditional farming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leger, Dorian</creatorcontrib><creatorcontrib>Matassa, Silvio</creatorcontrib><creatorcontrib>Noor, Elad</creatorcontrib><creatorcontrib>Shepon, Alon</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Bar-Even, Arren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leger, Dorian</au><au>Matassa, Silvio</au><au>Noor, Elad</au><au>Shepon, Alon</au><au>Milo, Ron</au><au>Bar-Even, Arren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-29</date><risdate>2021</risdate><volume>118</volume><issue>26</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34155098</pmid><doi>10.1073/pnas.2015025118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7232-6331</orcidid><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-1039-4328</orcidid><orcidid>https://orcid.org/0000-0002-4492-2766</orcidid><orcidid>https://orcid.org/0000-0002-4345-8957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (26), p.1-11
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8255800
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agricultural production
Animals
Bacterial Proteins - biosynthesis
Biological Sciences
Biomass
Carbon dioxide
Carbon sequestration
Carbon sources
Crop yield
Crops, Agricultural - growth & development
Dietary Proteins - metabolism
Dietary supplements
Energy Transfer
Humans
Land use
Microorganisms
Natural resources
Photovoltaics
Population growth
Protein folding
Proteins
Quantitative analysis
Single-cell protein
Solar Energy
Sunlight
Traditional farming
title Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic-driven%20microbial%20protein%20production%20can%20use%20land%20and%20sunlight%20more%20efficiently%20than%20conventional%20crops&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leger,%20Dorian&rft.date=2021-06-29&rft.volume=118&rft.issue=26&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2015025118&rft_dat=%3Cjstor_pubme%3E27040824%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549726091&rft_id=info:pmid/34155098&rft_jstor_id=27040824&rfr_iscdi=true