Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops
Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supple...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-06, Vol.118 (26), p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 26 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Leger, Dorian Matassa, Silvio Noor, Elad Shepon, Alon Milo, Ron Bar-Even, Arren |
description | Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale. |
doi_str_mv | 10.1073/pnas.2015025118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8255800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040824</jstor_id><sourcerecordid>27040824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EotvCmRMoEpde0o5fiX1BqipeUiU4wNny2k7Xq8QOtrNS_3sctiyPw2gO85tPM9-H0CsMVxh6ej0Hna8IYA6EYyyeoA0GiduOSXiKNgCkbwUj7Ayd57wHAMkFPEdnlGHOQYoNyl93scRDHIv2prXJH1xoJm9S3Ho9NnOKxfmwdruY4mNojA7Nkl0z6mCbtfISRn-_K80Uk2vcMHjjXSjjQ1N2lTUxVM11tepV3Tm_QM8GPWb38rFfoO8f3n-7_dTeffn4-fbmrjWM0dJK4Jr0QLpOD1pajAmnA6NysECA9k52zHa8c663W9xLYq0dsBNOGEo7Ixi9QO-OuvOynZw19YqkRzUnP-n0oKL26t9J8Dt1Hw9KEF59gipw-SiQ4o_F5aImn40b6-suLlkRzqqRfXWzom__Q_dxSfXlX5TsSVdzqdT1kao-5JzccDoGg1oDVWug6k-gdePN3z-c-N8JVuD1EdjnEtNpXo1jIAijPwFU36jZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549726091</pqid></control><display><type>article</type><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</creator><creatorcontrib>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</creatorcontrib><description>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2015025118</identifier><identifier>PMID: 34155098</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Agricultural production ; Animals ; Bacterial Proteins - biosynthesis ; Biological Sciences ; Biomass ; Carbon dioxide ; Carbon sequestration ; Carbon sources ; Crop yield ; Crops, Agricultural - growth & development ; Dietary Proteins - metabolism ; Dietary supplements ; Energy Transfer ; Humans ; Land use ; Microorganisms ; Natural resources ; Photovoltaics ; Population growth ; Protein folding ; Proteins ; Quantitative analysis ; Single-cell protein ; Solar Energy ; Sunlight ; Traditional farming</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (26), p.1-11</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Jun 29, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</citedby><cites>FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</cites><orcidid>0000-0001-7232-6331 ; 0000-0003-1641-2299 ; 0000-0002-1039-4328 ; 0000-0002-4492-2766 ; 0000-0002-4345-8957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040824$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040824$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34155098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leger, Dorian</creatorcontrib><creatorcontrib>Matassa, Silvio</creatorcontrib><creatorcontrib>Noor, Elad</creatorcontrib><creatorcontrib>Shepon, Alon</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Bar-Even, Arren</creatorcontrib><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</description><subject>Agricultural production</subject><subject>Animals</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>Crop yield</subject><subject>Crops, Agricultural - growth & development</subject><subject>Dietary Proteins - metabolism</subject><subject>Dietary supplements</subject><subject>Energy Transfer</subject><subject>Humans</subject><subject>Land use</subject><subject>Microorganisms</subject><subject>Natural resources</subject><subject>Photovoltaics</subject><subject>Population growth</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Single-cell protein</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Traditional farming</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctv1DAQxi0EotvCmRMoEpde0o5fiX1BqipeUiU4wNny2k7Xq8QOtrNS_3sctiyPw2gO85tPM9-H0CsMVxh6ej0Hna8IYA6EYyyeoA0GiduOSXiKNgCkbwUj7Ayd57wHAMkFPEdnlGHOQYoNyl93scRDHIv2prXJH1xoJm9S3Ho9NnOKxfmwdruY4mNojA7Nkl0z6mCbtfISRn-_K80Uk2vcMHjjXSjjQ1N2lTUxVM11tepV3Tm_QM8GPWb38rFfoO8f3n-7_dTeffn4-fbmrjWM0dJK4Jr0QLpOD1pajAmnA6NysECA9k52zHa8c663W9xLYq0dsBNOGEo7Ixi9QO-OuvOynZw19YqkRzUnP-n0oKL26t9J8Dt1Hw9KEF59gipw-SiQ4o_F5aImn40b6-suLlkRzqqRfXWzom__Q_dxSfXlX5TsSVdzqdT1kao-5JzccDoGg1oDVWug6k-gdePN3z-c-N8JVuD1EdjnEtNpXo1jIAijPwFU36jZ</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Leger, Dorian</creator><creator>Matassa, Silvio</creator><creator>Noor, Elad</creator><creator>Shepon, Alon</creator><creator>Milo, Ron</creator><creator>Bar-Even, Arren</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7232-6331</orcidid><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-1039-4328</orcidid><orcidid>https://orcid.org/0000-0002-4492-2766</orcidid><orcidid>https://orcid.org/0000-0002-4345-8957</orcidid></search><sort><creationdate>20210629</creationdate><title>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</title><author>Leger, Dorian ; Matassa, Silvio ; Noor, Elad ; Shepon, Alon ; Milo, Ron ; Bar-Even, Arren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-905a270266afa9d11253f439fd02037e964d656ee7db1792dddf1e8e8c336c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Animals</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>Crop yield</topic><topic>Crops, Agricultural - growth & development</topic><topic>Dietary Proteins - metabolism</topic><topic>Dietary supplements</topic><topic>Energy Transfer</topic><topic>Humans</topic><topic>Land use</topic><topic>Microorganisms</topic><topic>Natural resources</topic><topic>Photovoltaics</topic><topic>Population growth</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Single-cell protein</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Traditional farming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leger, Dorian</creatorcontrib><creatorcontrib>Matassa, Silvio</creatorcontrib><creatorcontrib>Noor, Elad</creatorcontrib><creatorcontrib>Shepon, Alon</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Bar-Even, Arren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leger, Dorian</au><au>Matassa, Silvio</au><au>Noor, Elad</au><au>Shepon, Alon</au><au>Milo, Ron</au><au>Bar-Even, Arren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-06-29</date><risdate>2021</risdate><volume>118</volume><issue>26</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34155098</pmid><doi>10.1073/pnas.2015025118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7232-6331</orcidid><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-1039-4328</orcidid><orcidid>https://orcid.org/0000-0002-4492-2766</orcidid><orcidid>https://orcid.org/0000-0002-4345-8957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-06, Vol.118 (26), p.1-11 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8255800 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agricultural production Animals Bacterial Proteins - biosynthesis Biological Sciences Biomass Carbon dioxide Carbon sequestration Carbon sources Crop yield Crops, Agricultural - growth & development Dietary Proteins - metabolism Dietary supplements Energy Transfer Humans Land use Microorganisms Natural resources Photovoltaics Population growth Protein folding Proteins Quantitative analysis Single-cell protein Solar Energy Sunlight Traditional farming |
title | Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic-driven%20microbial%20protein%20production%20can%20use%20land%20and%20sunlight%20more%20efficiently%20than%20conventional%20crops&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leger,%20Dorian&rft.date=2021-06-29&rft.volume=118&rft.issue=26&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2015025118&rft_dat=%3Cjstor_pubme%3E27040824%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549726091&rft_id=info:pmid/34155098&rft_jstor_id=27040824&rfr_iscdi=true |