Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease
To compare how structural MRI, fluorodeoxyglucose (FDG), and flortaucipir (FTP) PET signals predict cognitive decline in high-amyloid vs low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials....
Gespeichert in:
Veröffentlicht in: | Neurology 2021-06, Vol.96 (24), p.e2933-e2943 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2943 |
---|---|
container_issue | 24 |
container_start_page | e2933 |
container_title | Neurology |
container_volume | 96 |
creator | Mayblyum, Danielle V. Becker, J. Alex Jacobs, Heidi I.L. Buckley, Rachel F. Schultz, Aaron P. Sepulcre, Jorge Sanchez, Justin S. Rubinstein, Zoe B. Katz, Samantha R. Moody, Kirsten A. Vannini, Patrizia Papp, Kathryn V. Rentz, Dorene M. Price, Julie C. Sperling, Reisa A. Johnson, Keith A. Hanseeuw, Bernard J. |
description | To compare how structural MRI, fluorodeoxyglucose (FDG), and flortaucipir (FTP) PET signals predict cognitive decline in high-amyloid vs low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials.
In this prospective cohort study, we analyzed data from clinically normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and Pittsburgh compound B (PiB)-PET acquired within a year and prospective cognitive evaluations over a mean 3-year follow-up. We focused analyses on predefined regions of interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed with the Preclinical Alzheimer's Cognitive Composite. We evaluated the association between biomarkers and cognitive decline using linear mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials.
Data from 131 participants (52 women, age 73.98 ± 8.29 years) were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high PiB.
In preclinical Alzheimer disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials.
This study provides Class II evidence that in people with preclinical Alzheimer disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline. |
doi_str_mv | 10.1212/WNL.0000000000012108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522621118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4537-38bd8cfd1979179bfd2eaf3f841e748efd0861015a5f3cf6ac4b386ef6d31ebd3</originalsourceid><addsrcrecordid>eNpdkV9vFCEUxYnR2LX6DYzh0Zep_BkY5sWkbqs2WbUxNfokYZjLLpYZVpht0356GVtblRfIvef-OHAQek7JAWWUvfr6cXVA7lepEfUALahgspKcfXuIFoQwVXHVqD30JOcfRSRY0z5Ge5y3RSbEAn1fxmFrkh_X-PT4DJuxxx8-n-A3Pg4mnUPK-DRB7-00K5ZxPfrJXwA-Ahv8CNiPc38-e2sCPgzXG_ADJHzkM5gMT9EjZ0KGZ7f7Pvry9vhs-b5afXp3sjxcVbYWvCkeu15Z19O2aWnTdq5nYBx3qqbQ1ApcT5Skxb4Rjlsnja07riQ42XMKXc_30esb7nbXDdBbGKdkgt4mX55xpaPx-t_O6Dd6HS-0YoILyQrg5S0gxZ87yJMefLYQghkh7rJmgjHJKKWqSOsbqU0x5wTu7hpK9ByNLtHo_6MpYy_-tng39CeLe-5lDFP5-fOwu4SkN2DCtPnNk5TWFSMFJ6kg1Vxq-C9k4Jrl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522621118</pqid></control><display><type>article</type><title>Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease</title><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Mayblyum, Danielle V. ; Becker, J. Alex ; Jacobs, Heidi I.L. ; Buckley, Rachel F. ; Schultz, Aaron P. ; Sepulcre, Jorge ; Sanchez, Justin S. ; Rubinstein, Zoe B. ; Katz, Samantha R. ; Moody, Kirsten A. ; Vannini, Patrizia ; Papp, Kathryn V. ; Rentz, Dorene M. ; Price, Julie C. ; Sperling, Reisa A. ; Johnson, Keith A. ; Hanseeuw, Bernard J.</creator><creatorcontrib>Mayblyum, Danielle V. ; Becker, J. Alex ; Jacobs, Heidi I.L. ; Buckley, Rachel F. ; Schultz, Aaron P. ; Sepulcre, Jorge ; Sanchez, Justin S. ; Rubinstein, Zoe B. ; Katz, Samantha R. ; Moody, Kirsten A. ; Vannini, Patrizia ; Papp, Kathryn V. ; Rentz, Dorene M. ; Price, Julie C. ; Sperling, Reisa A. ; Johnson, Keith A. ; Hanseeuw, Bernard J.</creatorcontrib><description>To compare how structural MRI, fluorodeoxyglucose (FDG), and flortaucipir (FTP) PET signals predict cognitive decline in high-amyloid vs low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials.
In this prospective cohort study, we analyzed data from clinically normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and Pittsburgh compound B (PiB)-PET acquired within a year and prospective cognitive evaluations over a mean 3-year follow-up. We focused analyses on predefined regions of interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed with the Preclinical Alzheimer's Cognitive Composite. We evaluated the association between biomarkers and cognitive decline using linear mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials.
Data from 131 participants (52 women, age 73.98 ± 8.29 years) were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high PiB.
In preclinical Alzheimer disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials.
This study provides Class II evidence that in people with preclinical Alzheimer disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/WNL.0000000000012108</identifier><identifier>PMID: 33952655</identifier><language>eng</language><publisher>United States: American Academy of Neurology</publisher><ispartof>Neurology, 2021-06, Vol.96 (24), p.e2933-e2943</ispartof><rights>American Academy of Neurology</rights><rights>2021 American Academy of Neurology.</rights><rights>2021 American Academy of Neurology 2021 American Academy of Neurology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4537-38bd8cfd1979179bfd2eaf3f841e748efd0861015a5f3cf6ac4b386ef6d31ebd3</citedby><cites>FETCH-LOGICAL-c4537-38bd8cfd1979179bfd2eaf3f841e748efd0861015a5f3cf6ac4b386ef6d31ebd3</cites><orcidid>0000-0001-7435-1338 ; 0000-0002-6318-9213 ; 0000-0003-4421-3078 ; 0000-0001-6048-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33952655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayblyum, Danielle V.</creatorcontrib><creatorcontrib>Becker, J. Alex</creatorcontrib><creatorcontrib>Jacobs, Heidi I.L.</creatorcontrib><creatorcontrib>Buckley, Rachel F.</creatorcontrib><creatorcontrib>Schultz, Aaron P.</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Sanchez, Justin S.</creatorcontrib><creatorcontrib>Rubinstein, Zoe B.</creatorcontrib><creatorcontrib>Katz, Samantha R.</creatorcontrib><creatorcontrib>Moody, Kirsten A.</creatorcontrib><creatorcontrib>Vannini, Patrizia</creatorcontrib><creatorcontrib>Papp, Kathryn V.</creatorcontrib><creatorcontrib>Rentz, Dorene M.</creatorcontrib><creatorcontrib>Price, Julie C.</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Hanseeuw, Bernard J.</creatorcontrib><title>Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease</title><title>Neurology</title><addtitle>Neurology</addtitle><description>To compare how structural MRI, fluorodeoxyglucose (FDG), and flortaucipir (FTP) PET signals predict cognitive decline in high-amyloid vs low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials.
In this prospective cohort study, we analyzed data from clinically normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and Pittsburgh compound B (PiB)-PET acquired within a year and prospective cognitive evaluations over a mean 3-year follow-up. We focused analyses on predefined regions of interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed with the Preclinical Alzheimer's Cognitive Composite. We evaluated the association between biomarkers and cognitive decline using linear mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials.
Data from 131 participants (52 women, age 73.98 ± 8.29 years) were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high PiB.
In preclinical Alzheimer disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials.
This study provides Class II evidence that in people with preclinical Alzheimer disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline.</description><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkV9vFCEUxYnR2LX6DYzh0Zep_BkY5sWkbqs2WbUxNfokYZjLLpYZVpht0356GVtblRfIvef-OHAQek7JAWWUvfr6cXVA7lepEfUALahgspKcfXuIFoQwVXHVqD30JOcfRSRY0z5Ge5y3RSbEAn1fxmFrkh_X-PT4DJuxxx8-n-A3Pg4mnUPK-DRB7-00K5ZxPfrJXwA-Ahv8CNiPc38-e2sCPgzXG_ADJHzkM5gMT9EjZ0KGZ7f7Pvry9vhs-b5afXp3sjxcVbYWvCkeu15Z19O2aWnTdq5nYBx3qqbQ1ApcT5Skxb4Rjlsnja07riQ42XMKXc_30esb7nbXDdBbGKdkgt4mX55xpaPx-t_O6Dd6HS-0YoILyQrg5S0gxZ87yJMefLYQghkh7rJmgjHJKKWqSOsbqU0x5wTu7hpK9ByNLtHo_6MpYy_-tng39CeLe-5lDFP5-fOwu4SkN2DCtPnNk5TWFSMFJ6kg1Vxq-C9k4Jrl</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Mayblyum, Danielle V.</creator><creator>Becker, J. Alex</creator><creator>Jacobs, Heidi I.L.</creator><creator>Buckley, Rachel F.</creator><creator>Schultz, Aaron P.</creator><creator>Sepulcre, Jorge</creator><creator>Sanchez, Justin S.</creator><creator>Rubinstein, Zoe B.</creator><creator>Katz, Samantha R.</creator><creator>Moody, Kirsten A.</creator><creator>Vannini, Patrizia</creator><creator>Papp, Kathryn V.</creator><creator>Rentz, Dorene M.</creator><creator>Price, Julie C.</creator><creator>Sperling, Reisa A.</creator><creator>Johnson, Keith A.</creator><creator>Hanseeuw, Bernard J.</creator><general>American Academy of Neurology</general><general>Lippincott Williams & Wilkins</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7435-1338</orcidid><orcidid>https://orcid.org/0000-0002-6318-9213</orcidid><orcidid>https://orcid.org/0000-0003-4421-3078</orcidid><orcidid>https://orcid.org/0000-0001-6048-7605</orcidid></search><sort><creationdate>20210615</creationdate><title>Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease</title><author>Mayblyum, Danielle V. ; Becker, J. Alex ; Jacobs, Heidi I.L. ; Buckley, Rachel F. ; Schultz, Aaron P. ; Sepulcre, Jorge ; Sanchez, Justin S. ; Rubinstein, Zoe B. ; Katz, Samantha R. ; Moody, Kirsten A. ; Vannini, Patrizia ; Papp, Kathryn V. ; Rentz, Dorene M. ; Price, Julie C. ; Sperling, Reisa A. ; Johnson, Keith A. ; Hanseeuw, Bernard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4537-38bd8cfd1979179bfd2eaf3f841e748efd0861015a5f3cf6ac4b386ef6d31ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayblyum, Danielle V.</creatorcontrib><creatorcontrib>Becker, J. Alex</creatorcontrib><creatorcontrib>Jacobs, Heidi I.L.</creatorcontrib><creatorcontrib>Buckley, Rachel F.</creatorcontrib><creatorcontrib>Schultz, Aaron P.</creatorcontrib><creatorcontrib>Sepulcre, Jorge</creatorcontrib><creatorcontrib>Sanchez, Justin S.</creatorcontrib><creatorcontrib>Rubinstein, Zoe B.</creatorcontrib><creatorcontrib>Katz, Samantha R.</creatorcontrib><creatorcontrib>Moody, Kirsten A.</creatorcontrib><creatorcontrib>Vannini, Patrizia</creatorcontrib><creatorcontrib>Papp, Kathryn V.</creatorcontrib><creatorcontrib>Rentz, Dorene M.</creatorcontrib><creatorcontrib>Price, Julie C.</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Hanseeuw, Bernard J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayblyum, Danielle V.</au><au>Becker, J. Alex</au><au>Jacobs, Heidi I.L.</au><au>Buckley, Rachel F.</au><au>Schultz, Aaron P.</au><au>Sepulcre, Jorge</au><au>Sanchez, Justin S.</au><au>Rubinstein, Zoe B.</au><au>Katz, Samantha R.</au><au>Moody, Kirsten A.</au><au>Vannini, Patrizia</au><au>Papp, Kathryn V.</au><au>Rentz, Dorene M.</au><au>Price, Julie C.</au><au>Sperling, Reisa A.</au><au>Johnson, Keith A.</au><au>Hanseeuw, Bernard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2021-06-15</date><risdate>2021</risdate><volume>96</volume><issue>24</issue><spage>e2933</spage><epage>e2943</epage><pages>e2933-e2943</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><abstract>To compare how structural MRI, fluorodeoxyglucose (FDG), and flortaucipir (FTP) PET signals predict cognitive decline in high-amyloid vs low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials.
In this prospective cohort study, we analyzed data from clinically normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and Pittsburgh compound B (PiB)-PET acquired within a year and prospective cognitive evaluations over a mean 3-year follow-up. We focused analyses on predefined regions of interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed with the Preclinical Alzheimer's Cognitive Composite. We evaluated the association between biomarkers and cognitive decline using linear mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials.
Data from 131 participants (52 women, age 73.98 ± 8.29 years) were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high PiB.
In preclinical Alzheimer disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials.
This study provides Class II evidence that in people with preclinical Alzheimer disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline.</abstract><cop>United States</cop><pub>American Academy of Neurology</pub><pmid>33952655</pmid><doi>10.1212/WNL.0000000000012108</doi><orcidid>https://orcid.org/0000-0001-7435-1338</orcidid><orcidid>https://orcid.org/0000-0002-6318-9213</orcidid><orcidid>https://orcid.org/0000-0003-4421-3078</orcidid><orcidid>https://orcid.org/0000-0001-6048-7605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3878 |
ispartof | Neurology, 2021-06, Vol.96 (24), p.e2933-e2943 |
issn | 0028-3878 1526-632X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253562 |
source | Alma/SFX Local Collection; Journals@Ovid Complete |
title | Comparing PET and MRI Biomarkers Predicting Cognitive Decline in Preclinical Alzheimer Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20PET%20and%20MRI%20Biomarkers%20Predicting%20Cognitive%20Decline%20in%20Preclinical%20Alzheimer%20Disease&rft.jtitle=Neurology&rft.au=Mayblyum,%20Danielle%20V.&rft.date=2021-06-15&rft.volume=96&rft.issue=24&rft.spage=e2933&rft.epage=e2943&rft.pages=e2933-e2943&rft.issn=0028-3878&rft.eissn=1526-632X&rft_id=info:doi/10.1212/WNL.0000000000012108&rft_dat=%3Cproquest_pubme%3E2522621118%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522621118&rft_id=info:pmid/33952655&rfr_iscdi=true |