RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo

BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2021-07, Vol.112 (7), p.2679-2691
Hauptverfasser: Yuan, Meng, Wang, Yang, Qin, Mengting, Zhao, Xiaohui, Chen, Xiaodong, Li, Dandan, Miao, Yinsha, Otieno Odhiambo, Wood, Liu, Huasheng, Ma, Yunfeng, Ji, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2691
container_issue 7
container_start_page 2679
container_title Cancer science
container_volume 112
creator Yuan, Meng
Wang, Yang
Qin, Mengting
Zhao, Xiaohui
Chen, Xiaodong
Li, Dandan
Miao, Yinsha
Otieno Odhiambo, Wood
Liu, Huasheng
Ma, Yunfeng
Ji, Yanhong
description BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity. BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.
doi_str_mv 10.1111/cas.14939
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710743190</galeid><sourcerecordid>A710743190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</originalsourceid><addsrcrecordid>eNp9Ustu1DAUtRAVbQcW_ACyxIpFpn7l4Q1SOqIFaaRKBdaWx7mZuGTswU6mmh2fwDfyJbhNW1oJsBfXj3POvb4-CL2mZE7TODE6zqmQXD5DR5QLmZWEFM9v12UmCWeH6DjGK0J4IaR4gQ45l0ISQY6Qu6zPMbhOOwMRny4uf_34WZ8uaQpbH-1gd4B7GL_BxhpsoO_xOvjrocNDF_y47rAdYuI33o2mBx0Ba5NIdthj63CKwWPtmmmz8y_RQav7CK_u4gx9PfvwZfExW16cf1rUy8zkBZMZlK0gK5ZLAYa0reQVgJa5LleiaRkUjK64LPJKM1oAJ4yC0Lk20FTCtExzPkPvJ93tuNpAY8ANQfdqG-xGh73y2qqnN852au13qmI5Z1WVBN7eCQT_fYQ4qCs_BpdqVqmsipNS5sX_UaIsBC1z9ge11j0o61qfUpqNjUbVJSWl4DR90gzN_4JKs7npvXfQ2nT-hPBuIpjgYwzQPjyPEnXjC5V8oW59kbBvHvfjAXlvhAQ4mQDXKcv-30pqUX-eJH8Dae_C6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547641752</pqid></control><display><type>article</type><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</creator><creatorcontrib>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</creatorcontrib><description>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity. BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14939</identifier><identifier>PMID: 33949040</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Acid Anhydride Hydrolases - metabolism ; Acute lymphoblastic leukemia ; alternative non–homologous end joining pathway ; Amino acids ; Animal models ; Animals ; Antigens ; B-cell receptor ; BCR-ABL protein ; BCR-ABL1 gene ; BCR‐ABL1 signaling ; Binding sites ; Blast crisis ; Blast Crisis - genetics ; Blast Crisis - metabolism ; Bone marrow ; CD34 antigen ; Cell growth ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Chronic myeloid leukemia ; Cloning ; CRISPR ; Disease Progression ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endonuclease ; Endonucleases - metabolism ; Fusion Proteins, bcr-abl - genetics ; Fusion Proteins, bcr-abl - metabolism ; Gene fusion ; Genes ; Genomes ; Genomic Instability ; Heterografts ; Histones - analysis ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; In Vitro Techniques ; Kinases ; Laboratory animals ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Lymphatic leukemia ; Lymphocytes ; Mice ; Mice, Inbred NOD ; Mice, SCID ; MRE11 Homologue Protein - metabolism ; MRE11 protein ; Myeloid leukemia ; Non-homologous end joining ; Nuclear Proteins - deficiency ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleases ; Original ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Protein Kinase Inhibitors - therapeutic use ; Protein-tyrosine kinase ; RAG1 protein ; RAG2 protein ; Recombinase ; Recombination ; recombination‐activating genes RAG1 and RAG2 ; T cell receptors ; tyrosine kinase inhibitors ; Xenografts ; γ‐H2AX</subject><ispartof>Cancer science, 2021-07, Vol.112 (7), p.2679-2691</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</citedby><cites>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</cites><orcidid>0000-0003-4144-4786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33949040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Qin, Mengting</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Miao, Yinsha</creatorcontrib><creatorcontrib>Otieno Odhiambo, Wood</creatorcontrib><creatorcontrib>Liu, Huasheng</creatorcontrib><creatorcontrib>Ma, Yunfeng</creatorcontrib><creatorcontrib>Ji, Yanhong</creatorcontrib><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity. BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</description><subject>Acid Anhydride Hydrolases - metabolism</subject><subject>Acute lymphoblastic leukemia</subject><subject>alternative non–homologous end joining pathway</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>B-cell receptor</subject><subject>BCR-ABL protein</subject><subject>BCR-ABL1 gene</subject><subject>BCR‐ABL1 signaling</subject><subject>Binding sites</subject><subject>Blast crisis</subject><subject>Blast Crisis - genetics</subject><subject>Blast Crisis - metabolism</subject><subject>Bone marrow</subject><subject>CD34 antigen</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chronic myeloid leukemia</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Disease Progression</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endonuclease</subject><subject>Endonucleases - metabolism</subject><subject>Fusion Proteins, bcr-abl - genetics</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Gene fusion</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Heterografts</subject><subject>Histones - analysis</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Lymphatic leukemia</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>MRE11 Homologue Protein - metabolism</subject><subject>MRE11 protein</subject><subject>Myeloid leukemia</subject><subject>Non-homologous end joining</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleases</subject><subject>Original</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-tyrosine kinase</subject><subject>RAG1 protein</subject><subject>RAG2 protein</subject><subject>Recombinase</subject><subject>Recombination</subject><subject>recombination‐activating genes RAG1 and RAG2</subject><subject>T cell receptors</subject><subject>tyrosine kinase inhibitors</subject><subject>Xenografts</subject><subject>γ‐H2AX</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Ustu1DAUtRAVbQcW_ACyxIpFpn7l4Q1SOqIFaaRKBdaWx7mZuGTswU6mmh2fwDfyJbhNW1oJsBfXj3POvb4-CL2mZE7TODE6zqmQXD5DR5QLmZWEFM9v12UmCWeH6DjGK0J4IaR4gQ45l0ISQY6Qu6zPMbhOOwMRny4uf_34WZ8uaQpbH-1gd4B7GL_BxhpsoO_xOvjrocNDF_y47rAdYuI33o2mBx0Ba5NIdthj63CKwWPtmmmz8y_RQav7CK_u4gx9PfvwZfExW16cf1rUy8zkBZMZlK0gK5ZLAYa0reQVgJa5LleiaRkUjK64LPJKM1oAJ4yC0Lk20FTCtExzPkPvJ93tuNpAY8ANQfdqG-xGh73y2qqnN852au13qmI5Z1WVBN7eCQT_fYQ4qCs_BpdqVqmsipNS5sX_UaIsBC1z9ge11j0o61qfUpqNjUbVJSWl4DR90gzN_4JKs7npvXfQ2nT-hPBuIpjgYwzQPjyPEnXjC5V8oW59kbBvHvfjAXlvhAQ4mQDXKcv-30pqUX-eJH8Dae_C6A</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Yuan, Meng</creator><creator>Wang, Yang</creator><creator>Qin, Mengting</creator><creator>Zhao, Xiaohui</creator><creator>Chen, Xiaodong</creator><creator>Li, Dandan</creator><creator>Miao, Yinsha</creator><creator>Otieno Odhiambo, Wood</creator><creator>Liu, Huasheng</creator><creator>Ma, Yunfeng</creator><creator>Ji, Yanhong</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4144-4786</orcidid></search><sort><creationdate>202107</creationdate><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><author>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid Anhydride Hydrolases - metabolism</topic><topic>Acute lymphoblastic leukemia</topic><topic>alternative non–homologous end joining pathway</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>B-cell receptor</topic><topic>BCR-ABL protein</topic><topic>BCR-ABL1 gene</topic><topic>BCR‐ABL1 signaling</topic><topic>Binding sites</topic><topic>Blast crisis</topic><topic>Blast Crisis - genetics</topic><topic>Blast Crisis - metabolism</topic><topic>Bone marrow</topic><topic>CD34 antigen</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chronic myeloid leukemia</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Disease Progression</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endonuclease</topic><topic>Endonucleases - metabolism</topic><topic>Fusion Proteins, bcr-abl - genetics</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Gene fusion</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Heterografts</topic><topic>Histones - analysis</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Lymphatic leukemia</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>MRE11 Homologue Protein - metabolism</topic><topic>MRE11 protein</topic><topic>Myeloid leukemia</topic><topic>Non-homologous end joining</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleases</topic><topic>Original</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-tyrosine kinase</topic><topic>RAG1 protein</topic><topic>RAG2 protein</topic><topic>Recombinase</topic><topic>Recombination</topic><topic>recombination‐activating genes RAG1 and RAG2</topic><topic>T cell receptors</topic><topic>tyrosine kinase inhibitors</topic><topic>Xenografts</topic><topic>γ‐H2AX</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Qin, Mengting</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Miao, Yinsha</creatorcontrib><creatorcontrib>Otieno Odhiambo, Wood</creatorcontrib><creatorcontrib>Liu, Huasheng</creatorcontrib><creatorcontrib>Ma, Yunfeng</creatorcontrib><creatorcontrib>Ji, Yanhong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Meng</au><au>Wang, Yang</au><au>Qin, Mengting</au><au>Zhao, Xiaohui</au><au>Chen, Xiaodong</au><au>Li, Dandan</au><au>Miao, Yinsha</au><au>Otieno Odhiambo, Wood</au><au>Liu, Huasheng</au><au>Ma, Yunfeng</au><au>Ji, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2021-07</date><risdate>2021</risdate><volume>112</volume><issue>7</issue><spage>2679</spage><epage>2691</epage><pages>2679-2691</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity. BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33949040</pmid><doi>10.1111/cas.14939</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4144-4786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2021-07, Vol.112 (7), p.2679-2691
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253288
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; PubMed Central
subjects Acid Anhydride Hydrolases - metabolism
Acute lymphoblastic leukemia
alternative non–homologous end joining pathway
Amino acids
Animal models
Animals
Antigens
B-cell receptor
BCR-ABL protein
BCR-ABL1 gene
BCR‐ABL1 signaling
Binding sites
Blast crisis
Blast Crisis - genetics
Blast Crisis - metabolism
Bone marrow
CD34 antigen
Cell growth
Cell Line, Tumor
Cell Proliferation
Cell Survival
Chronic myeloid leukemia
Cloning
CRISPR
Disease Progression
DNA Breaks, Double-Stranded
DNA End-Joining Repair
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endonuclease
Endonucleases - metabolism
Fusion Proteins, bcr-abl - genetics
Fusion Proteins, bcr-abl - metabolism
Gene fusion
Genes
Genomes
Genomic Instability
Heterografts
Histones - analysis
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
In Vitro Techniques
Kinases
Laboratory animals
Leukemia
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology
Lymphatic leukemia
Lymphocytes
Mice
Mice, Inbred NOD
Mice, SCID
MRE11 Homologue Protein - metabolism
MRE11 protein
Myeloid leukemia
Non-homologous end joining
Nuclear Proteins - deficiency
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nucleases
Original
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism
Protein Kinase Inhibitors - therapeutic use
Protein-tyrosine kinase
RAG1 protein
RAG2 protein
Recombinase
Recombination
recombination‐activating genes RAG1 and RAG2
T cell receptors
tyrosine kinase inhibitors
Xenografts
γ‐H2AX
title RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAG%20enhances%20BCR%E2%80%90ABL1%E2%80%90positive%20leukemic%20cell%20growth%20through%20its%20endonuclease%20activity%20in%20vitro%20and%20in%20vivo&rft.jtitle=Cancer%20science&rft.au=Yuan,%20Meng&rft.date=2021-07&rft.volume=112&rft.issue=7&rft.spage=2679&rft.epage=2691&rft.pages=2679-2691&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14939&rft_dat=%3Cgale_pubme%3EA710743190%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547641752&rft_id=info:pmid/33949040&rft_galeid=A710743190&rfr_iscdi=true