RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo
BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 a...
Gespeichert in:
Veröffentlicht in: | Cancer science 2021-07, Vol.112 (7), p.2679-2691 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2691 |
---|---|
container_issue | 7 |
container_start_page | 2679 |
container_title | Cancer science |
container_volume | 112 |
creator | Yuan, Meng Wang, Yang Qin, Mengting Zhao, Xiaohui Chen, Xiaodong Li, Dandan Miao, Yinsha Otieno Odhiambo, Wood Liu, Huasheng Ma, Yunfeng Ji, Yanhong |
description | BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity.
BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain. |
doi_str_mv | 10.1111/cas.14939 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710743190</galeid><sourcerecordid>A710743190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</originalsourceid><addsrcrecordid>eNp9Ustu1DAUtRAVbQcW_ACyxIpFpn7l4Q1SOqIFaaRKBdaWx7mZuGTswU6mmh2fwDfyJbhNW1oJsBfXj3POvb4-CL2mZE7TODE6zqmQXD5DR5QLmZWEFM9v12UmCWeH6DjGK0J4IaR4gQ45l0ISQY6Qu6zPMbhOOwMRny4uf_34WZ8uaQpbH-1gd4B7GL_BxhpsoO_xOvjrocNDF_y47rAdYuI33o2mBx0Ba5NIdthj63CKwWPtmmmz8y_RQav7CK_u4gx9PfvwZfExW16cf1rUy8zkBZMZlK0gK5ZLAYa0reQVgJa5LleiaRkUjK64LPJKM1oAJ4yC0Lk20FTCtExzPkPvJ93tuNpAY8ANQfdqG-xGh73y2qqnN852au13qmI5Z1WVBN7eCQT_fYQ4qCs_BpdqVqmsipNS5sX_UaIsBC1z9ge11j0o61qfUpqNjUbVJSWl4DR90gzN_4JKs7npvXfQ2nT-hPBuIpjgYwzQPjyPEnXjC5V8oW59kbBvHvfjAXlvhAQ4mQDXKcv-30pqUX-eJH8Dae_C6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547641752</pqid></control><display><type>article</type><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</creator><creatorcontrib>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</creatorcontrib><description>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity.
BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14939</identifier><identifier>PMID: 33949040</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Acid Anhydride Hydrolases - metabolism ; Acute lymphoblastic leukemia ; alternative non–homologous end joining pathway ; Amino acids ; Animal models ; Animals ; Antigens ; B-cell receptor ; BCR-ABL protein ; BCR-ABL1 gene ; BCR‐ABL1 signaling ; Binding sites ; Blast crisis ; Blast Crisis - genetics ; Blast Crisis - metabolism ; Bone marrow ; CD34 antigen ; Cell growth ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival ; Chronic myeloid leukemia ; Cloning ; CRISPR ; Disease Progression ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endonuclease ; Endonucleases - metabolism ; Fusion Proteins, bcr-abl - genetics ; Fusion Proteins, bcr-abl - metabolism ; Gene fusion ; Genes ; Genomes ; Genomic Instability ; Heterografts ; Histones - analysis ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; In Vitro Techniques ; Kinases ; Laboratory animals ; Leukemia ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Lymphatic leukemia ; Lymphocytes ; Mice ; Mice, Inbred NOD ; Mice, SCID ; MRE11 Homologue Protein - metabolism ; MRE11 protein ; Myeloid leukemia ; Non-homologous end joining ; Nuclear Proteins - deficiency ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nucleases ; Original ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Protein Kinase Inhibitors - therapeutic use ; Protein-tyrosine kinase ; RAG1 protein ; RAG2 protein ; Recombinase ; Recombination ; recombination‐activating genes RAG1 and RAG2 ; T cell receptors ; tyrosine kinase inhibitors ; Xenografts ; γ‐H2AX</subject><ispartof>Cancer science, 2021-07, Vol.112 (7), p.2679-2691</ispartof><rights>2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>COPYRIGHT 2021 John Wiley & Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</citedby><cites>FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</cites><orcidid>0000-0003-4144-4786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33949040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Qin, Mengting</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Miao, Yinsha</creatorcontrib><creatorcontrib>Otieno Odhiambo, Wood</creatorcontrib><creatorcontrib>Liu, Huasheng</creatorcontrib><creatorcontrib>Ma, Yunfeng</creatorcontrib><creatorcontrib>Ji, Yanhong</creatorcontrib><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity.
BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</description><subject>Acid Anhydride Hydrolases - metabolism</subject><subject>Acute lymphoblastic leukemia</subject><subject>alternative non–homologous end joining pathway</subject><subject>Amino acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>B-cell receptor</subject><subject>BCR-ABL protein</subject><subject>BCR-ABL1 gene</subject><subject>BCR‐ABL1 signaling</subject><subject>Binding sites</subject><subject>Blast crisis</subject><subject>Blast Crisis - genetics</subject><subject>Blast Crisis - metabolism</subject><subject>Bone marrow</subject><subject>CD34 antigen</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chronic myeloid leukemia</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Disease Progression</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endonuclease</subject><subject>Endonucleases - metabolism</subject><subject>Fusion Proteins, bcr-abl - genetics</subject><subject>Fusion Proteins, bcr-abl - metabolism</subject><subject>Gene fusion</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Heterografts</subject><subject>Histones - analysis</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Leukemia</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Lymphatic leukemia</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>MRE11 Homologue Protein - metabolism</subject><subject>MRE11 protein</subject><subject>Myeloid leukemia</subject><subject>Non-homologous end joining</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nucleases</subject><subject>Original</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Protein-tyrosine kinase</subject><subject>RAG1 protein</subject><subject>RAG2 protein</subject><subject>Recombinase</subject><subject>Recombination</subject><subject>recombination‐activating genes RAG1 and RAG2</subject><subject>T cell receptors</subject><subject>tyrosine kinase inhibitors</subject><subject>Xenografts</subject><subject>γ‐H2AX</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Ustu1DAUtRAVbQcW_ACyxIpFpn7l4Q1SOqIFaaRKBdaWx7mZuGTswU6mmh2fwDfyJbhNW1oJsBfXj3POvb4-CL2mZE7TODE6zqmQXD5DR5QLmZWEFM9v12UmCWeH6DjGK0J4IaR4gQ45l0ISQY6Qu6zPMbhOOwMRny4uf_34WZ8uaQpbH-1gd4B7GL_BxhpsoO_xOvjrocNDF_y47rAdYuI33o2mBx0Ba5NIdthj63CKwWPtmmmz8y_RQav7CK_u4gx9PfvwZfExW16cf1rUy8zkBZMZlK0gK5ZLAYa0reQVgJa5LleiaRkUjK64LPJKM1oAJ4yC0Lk20FTCtExzPkPvJ93tuNpAY8ANQfdqG-xGh73y2qqnN852au13qmI5Z1WVBN7eCQT_fYQ4qCs_BpdqVqmsipNS5sX_UaIsBC1z9ge11j0o61qfUpqNjUbVJSWl4DR90gzN_4JKs7npvXfQ2nT-hPBuIpjgYwzQPjyPEnXjC5V8oW59kbBvHvfjAXlvhAQ4mQDXKcv-30pqUX-eJH8Dae_C6A</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Yuan, Meng</creator><creator>Wang, Yang</creator><creator>Qin, Mengting</creator><creator>Zhao, Xiaohui</creator><creator>Chen, Xiaodong</creator><creator>Li, Dandan</creator><creator>Miao, Yinsha</creator><creator>Otieno Odhiambo, Wood</creator><creator>Liu, Huasheng</creator><creator>Ma, Yunfeng</creator><creator>Ji, Yanhong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4144-4786</orcidid></search><sort><creationdate>202107</creationdate><title>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</title><author>Yuan, Meng ; Wang, Yang ; Qin, Mengting ; Zhao, Xiaohui ; Chen, Xiaodong ; Li, Dandan ; Miao, Yinsha ; Otieno Odhiambo, Wood ; Liu, Huasheng ; Ma, Yunfeng ; Ji, Yanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5629-e7f40b2594ec0ff938eea95a7b4df2e621b39658a216e3021e4a5aced84cf2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acid Anhydride Hydrolases - metabolism</topic><topic>Acute lymphoblastic leukemia</topic><topic>alternative non–homologous end joining pathway</topic><topic>Amino acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>B-cell receptor</topic><topic>BCR-ABL protein</topic><topic>BCR-ABL1 gene</topic><topic>BCR‐ABL1 signaling</topic><topic>Binding sites</topic><topic>Blast crisis</topic><topic>Blast Crisis - genetics</topic><topic>Blast Crisis - metabolism</topic><topic>Bone marrow</topic><topic>CD34 antigen</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chronic myeloid leukemia</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Disease Progression</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endonuclease</topic><topic>Endonucleases - metabolism</topic><topic>Fusion Proteins, bcr-abl - genetics</topic><topic>Fusion Proteins, bcr-abl - metabolism</topic><topic>Gene fusion</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Heterografts</topic><topic>Histones - analysis</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Leukemia</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Lymphatic leukemia</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>MRE11 Homologue Protein - metabolism</topic><topic>MRE11 protein</topic><topic>Myeloid leukemia</topic><topic>Non-homologous end joining</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nucleases</topic><topic>Original</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Protein-tyrosine kinase</topic><topic>RAG1 protein</topic><topic>RAG2 protein</topic><topic>Recombinase</topic><topic>Recombination</topic><topic>recombination‐activating genes RAG1 and RAG2</topic><topic>T cell receptors</topic><topic>tyrosine kinase inhibitors</topic><topic>Xenografts</topic><topic>γ‐H2AX</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Meng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Qin, Mengting</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><creatorcontrib>Li, Dandan</creatorcontrib><creatorcontrib>Miao, Yinsha</creatorcontrib><creatorcontrib>Otieno Odhiambo, Wood</creatorcontrib><creatorcontrib>Liu, Huasheng</creatorcontrib><creatorcontrib>Ma, Yunfeng</creatorcontrib><creatorcontrib>Ji, Yanhong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Meng</au><au>Wang, Yang</au><au>Qin, Mengting</au><au>Zhao, Xiaohui</au><au>Chen, Xiaodong</au><au>Li, Dandan</au><au>Miao, Yinsha</au><au>Otieno Odhiambo, Wood</au><au>Liu, Huasheng</au><au>Ma, Yunfeng</au><au>Ji, Yanhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2021-07</date><risdate>2021</risdate><volume>112</volume><issue>7</issue><spage>2679</spage><epage>2691</epage><pages>2679-2691</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>BCR‐ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML‐LBC) lineage and BCR‐ABL1+ acute lymphoblastic leukemia (BCR‐ABL1+ ALL). The recombination‐activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML‐LBC and BCR‐ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild‐type (WT) RAG and catalytically inactive RAG‐expressing BCR‐ABL1+ and BCR‐ABL1− cell lines, respectively, and demonstrate that BCR‐ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG‐expressing BCR‐ABL1+ cell lines and primary CD34+ bone marrow cells from CML‐LBC samples maintain more double‐strand breaks (DSB) compared to catalytically inactive RAG‐expressing BCR‐ABL1+ cell lines and RAG‐deficient CML‐CP samples, which are measured by γ‐H2AX. WT RAG‐expressing BCR‐ABL1+ cells are biased to repair RAG‐mediated DSB by the alternative non–homologous end joining pathway (a‐NHEJ), which could contribute genomic instability through increasing the expression of a‐NHEJ‐related MRE11 and RAD50 proteins. As a result, RAG‐expressing BCR‐ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR‐ABL1 signaling but independent of the levels of BCR‐ABL1 expression and mutations in the BCR‐ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR‐ABL1+ leukemia through its endonuclease activity.
BCR‐ABL1 associates with RAG to promote BCR‐ABL1+ cell survival in vitro and in vivo. The endonuclease activity of RAG drives BCR‐ABL1+ cells to choose the a‐NHEJ pathway in response to DNA damage. RAG stimulates BCR‐ABL1 signaling to reduce TKI therapeutic efficacy, albeit independently of BCR‐ABL1 expression and mutations in the BCR‐ABL1 kinase domain.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33949040</pmid><doi>10.1111/cas.14939</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4144-4786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2021-07, Vol.112 (7), p.2679-2691 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253288 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; PubMed Central |
subjects | Acid Anhydride Hydrolases - metabolism Acute lymphoblastic leukemia alternative non–homologous end joining pathway Amino acids Animal models Animals Antigens B-cell receptor BCR-ABL protein BCR-ABL1 gene BCR‐ABL1 signaling Binding sites Blast crisis Blast Crisis - genetics Blast Crisis - metabolism Bone marrow CD34 antigen Cell growth Cell Line, Tumor Cell Proliferation Cell Survival Chronic myeloid leukemia Cloning CRISPR Disease Progression DNA Breaks, Double-Stranded DNA End-Joining Repair DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endonuclease Endonucleases - metabolism Fusion Proteins, bcr-abl - genetics Fusion Proteins, bcr-abl - metabolism Gene fusion Genes Genomes Genomic Instability Heterografts Histones - analysis Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans In Vitro Techniques Kinases Laboratory animals Leukemia Leukemia, Myelogenous, Chronic, BCR-ABL Positive - genetics Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology Lymphatic leukemia Lymphocytes Mice Mice, Inbred NOD Mice, SCID MRE11 Homologue Protein - metabolism MRE11 protein Myeloid leukemia Non-homologous end joining Nuclear Proteins - deficiency Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleases Original Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism Protein Kinase Inhibitors - therapeutic use Protein-tyrosine kinase RAG1 protein RAG2 protein Recombinase Recombination recombination‐activating genes RAG1 and RAG2 T cell receptors tyrosine kinase inhibitors Xenografts γ‐H2AX |
title | RAG enhances BCR‐ABL1‐positive leukemic cell growth through its endonuclease activity in vitro and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAG%20enhances%20BCR%E2%80%90ABL1%E2%80%90positive%20leukemic%20cell%20growth%20through%20its%20endonuclease%20activity%20in%20vitro%20and%20in%20vivo&rft.jtitle=Cancer%20science&rft.au=Yuan,%20Meng&rft.date=2021-07&rft.volume=112&rft.issue=7&rft.spage=2679&rft.epage=2691&rft.pages=2679-2691&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14939&rft_dat=%3Cgale_pubme%3EA710743190%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547641752&rft_id=info:pmid/33949040&rft_galeid=A710743190&rfr_iscdi=true |