Measuring association among censored antibody titer data
Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2021-07, Vol.40 (16), p.3740-3761 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3761 |
---|---|
container_issue | 16 |
container_start_page | 3740 |
container_title | Statistics in medicine |
container_volume | 40 |
creator | Tran, Thao M. P. Abrams, Steven Aerts, Marc Maertens, Kirsten Hens, Niel |
description | Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches. |
doi_str_mv | 10.1002/sim.8995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540432723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouq6Cv0AKXrx0zWeTXgRZ_FhQPKjnMJummqVtNGmV_fdG12_wFJg8PPPODEJ7BE8IxvQounaiylKsoRHBpcwxFWodjTCVMi8kEVtoO8YFxoQIKjfRFmMlp4yLEVJXFuIQXHefQYzeOOid7zJofaoY20UfbJVB17u5r5ZZ73obsgp62EEbNTTR7n68Y3R3dno7vcgvr89n05PL3HCmRM4J4LlhihdGEVsXsgDDgPGCyIrQGkwq2YpVkpqCzWtrgBlbCmHSWJYSzsboeOV9HOatrVKkPkCjH4NrISy1B6d__3TuQd_7Z62oIGklSXD4IQj-abCx162LxjYNdNYPUVNBKVFSMpnQgz_owg-hS-MlimPOqKTsW2iCjzHY-isMwfrtHDqdQ6tV7_2f4b_Az_0nIF8BL66xy39F-mZ29S58BcvZlGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540432723</pqid></control><display><type>article</type><title>Measuring association among censored antibody titer data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</creator><creatorcontrib>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</creatorcontrib><description>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8995</identifier><identifier>PMID: 33942345</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>antibody titers ; association ; geometric mean concentration ; left‐censored data ; maximum likelihood inference</subject><ispartof>Statistics in medicine, 2021-07, Vol.40 (16), p.3740-3761</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</citedby><cites>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</cites><orcidid>0000-0003-1881-0637 ; 0000-0002-2880-441X ; 0000-0001-7353-9304 ; 0000-0002-1803-9072 ; 0000-0003-2336-8302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8995$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8995$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33942345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Thao M. P.</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Maertens, Kirsten</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><title>Measuring association among censored antibody titer data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</description><subject>antibody titers</subject><subject>association</subject><subject>geometric mean concentration</subject><subject>left‐censored data</subject><subject>maximum likelihood inference</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LxDAQhoMouq6Cv0AKXrx0zWeTXgRZ_FhQPKjnMJummqVtNGmV_fdG12_wFJg8PPPODEJ7BE8IxvQounaiylKsoRHBpcwxFWodjTCVMi8kEVtoO8YFxoQIKjfRFmMlp4yLEVJXFuIQXHefQYzeOOid7zJofaoY20UfbJVB17u5r5ZZ73obsgp62EEbNTTR7n68Y3R3dno7vcgvr89n05PL3HCmRM4J4LlhihdGEVsXsgDDgPGCyIrQGkwq2YpVkpqCzWtrgBlbCmHSWJYSzsboeOV9HOatrVKkPkCjH4NrISy1B6d__3TuQd_7Z62oIGklSXD4IQj-abCx162LxjYNdNYPUVNBKVFSMpnQgz_owg-hS-MlimPOqKTsW2iCjzHY-isMwfrtHDqdQ6tV7_2f4b_Az_0nIF8BL66xy39F-mZ29S58BcvZlGU</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Tran, Thao M. P.</creator><creator>Abrams, Steven</creator><creator>Aerts, Marc</creator><creator>Maertens, Kirsten</creator><creator>Hens, Niel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1881-0637</orcidid><orcidid>https://orcid.org/0000-0002-2880-441X</orcidid><orcidid>https://orcid.org/0000-0001-7353-9304</orcidid><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0003-2336-8302</orcidid></search><sort><creationdate>20210720</creationdate><title>Measuring association among censored antibody titer data</title><author>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>antibody titers</topic><topic>association</topic><topic>geometric mean concentration</topic><topic>left‐censored data</topic><topic>maximum likelihood inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thao M. P.</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Maertens, Kirsten</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Thao M. P.</au><au>Abrams, Steven</au><au>Aerts, Marc</au><au>Maertens, Kirsten</au><au>Hens, Niel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring association among censored antibody titer data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>40</volume><issue>16</issue><spage>3740</spage><epage>3761</epage><pages>3740-3761</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33942345</pmid><doi>10.1002/sim.8995</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1881-0637</orcidid><orcidid>https://orcid.org/0000-0002-2880-441X</orcidid><orcidid>https://orcid.org/0000-0001-7353-9304</orcidid><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0003-2336-8302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2021-07, Vol.40 (16), p.3740-3761 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251995 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | antibody titers association geometric mean concentration left‐censored data maximum likelihood inference |
title | Measuring association among censored antibody titer data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20association%20among%20censored%20antibody%20titer%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Tran,%20Thao%20M.%20P.&rft.date=2021-07-20&rft.volume=40&rft.issue=16&rft.spage=3740&rft.epage=3761&rft.pages=3740-3761&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8995&rft_dat=%3Cproquest_pubme%3E2540432723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540432723&rft_id=info:pmid/33942345&rfr_iscdi=true |