Measuring association among censored antibody titer data

Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2021-07, Vol.40 (16), p.3740-3761
Hauptverfasser: Tran, Thao M. P., Abrams, Steven, Aerts, Marc, Maertens, Kirsten, Hens, Niel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3761
container_issue 16
container_start_page 3740
container_title Statistics in medicine
container_volume 40
creator Tran, Thao M. P.
Abrams, Steven
Aerts, Marc
Maertens, Kirsten
Hens, Niel
description Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.
doi_str_mv 10.1002/sim.8995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540432723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouq6Cv0AKXrx0zWeTXgRZ_FhQPKjnMJummqVtNGmV_fdG12_wFJg8PPPODEJ7BE8IxvQounaiylKsoRHBpcwxFWodjTCVMi8kEVtoO8YFxoQIKjfRFmMlp4yLEVJXFuIQXHefQYzeOOid7zJofaoY20UfbJVB17u5r5ZZ73obsgp62EEbNTTR7n68Y3R3dno7vcgvr89n05PL3HCmRM4J4LlhihdGEVsXsgDDgPGCyIrQGkwq2YpVkpqCzWtrgBlbCmHSWJYSzsboeOV9HOatrVKkPkCjH4NrISy1B6d__3TuQd_7Z62oIGklSXD4IQj-abCx162LxjYNdNYPUVNBKVFSMpnQgz_owg-hS-MlimPOqKTsW2iCjzHY-isMwfrtHDqdQ6tV7_2f4b_Az_0nIF8BL66xy39F-mZ29S58BcvZlGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540432723</pqid></control><display><type>article</type><title>Measuring association among censored antibody titer data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</creator><creatorcontrib>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</creatorcontrib><description>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8995</identifier><identifier>PMID: 33942345</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>antibody titers ; association ; geometric mean concentration ; left‐censored data ; maximum likelihood inference</subject><ispartof>Statistics in medicine, 2021-07, Vol.40 (16), p.3740-3761</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</citedby><cites>FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</cites><orcidid>0000-0003-1881-0637 ; 0000-0002-2880-441X ; 0000-0001-7353-9304 ; 0000-0002-1803-9072 ; 0000-0003-2336-8302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8995$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8995$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33942345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Thao M. P.</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Maertens, Kirsten</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><title>Measuring association among censored antibody titer data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</description><subject>antibody titers</subject><subject>association</subject><subject>geometric mean concentration</subject><subject>left‐censored data</subject><subject>maximum likelihood inference</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LxDAQhoMouq6Cv0AKXrx0zWeTXgRZ_FhQPKjnMJummqVtNGmV_fdG12_wFJg8PPPODEJ7BE8IxvQounaiylKsoRHBpcwxFWodjTCVMi8kEVtoO8YFxoQIKjfRFmMlp4yLEVJXFuIQXHefQYzeOOid7zJofaoY20UfbJVB17u5r5ZZ73obsgp62EEbNTTR7n68Y3R3dno7vcgvr89n05PL3HCmRM4J4LlhihdGEVsXsgDDgPGCyIrQGkwq2YpVkpqCzWtrgBlbCmHSWJYSzsboeOV9HOatrVKkPkCjH4NrISy1B6d__3TuQd_7Z62oIGklSXD4IQj-abCx162LxjYNdNYPUVNBKVFSMpnQgz_owg-hS-MlimPOqKTsW2iCjzHY-isMwfrtHDqdQ6tV7_2f4b_Az_0nIF8BL66xy39F-mZ29S58BcvZlGU</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Tran, Thao M. P.</creator><creator>Abrams, Steven</creator><creator>Aerts, Marc</creator><creator>Maertens, Kirsten</creator><creator>Hens, Niel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1881-0637</orcidid><orcidid>https://orcid.org/0000-0002-2880-441X</orcidid><orcidid>https://orcid.org/0000-0001-7353-9304</orcidid><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0003-2336-8302</orcidid></search><sort><creationdate>20210720</creationdate><title>Measuring association among censored antibody titer data</title><author>Tran, Thao M. P. ; Abrams, Steven ; Aerts, Marc ; Maertens, Kirsten ; Hens, Niel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-41a0bc3846c81ef676ac3a34617d12facf67ed3d72c63bfeca3ce955c002e2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>antibody titers</topic><topic>association</topic><topic>geometric mean concentration</topic><topic>left‐censored data</topic><topic>maximum likelihood inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thao M. P.</creatorcontrib><creatorcontrib>Abrams, Steven</creatorcontrib><creatorcontrib>Aerts, Marc</creatorcontrib><creatorcontrib>Maertens, Kirsten</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Thao M. P.</au><au>Abrams, Steven</au><au>Aerts, Marc</au><au>Maertens, Kirsten</au><au>Hens, Niel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring association among censored antibody titer data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>40</volume><issue>16</issue><spage>3740</spage><epage>3761</epage><pages>3740-3761</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Censoring due to a limit of detection or limit of quantification happens quite often in many medical studies. Conventional approaches to deal with censoring when analyzing these data include, for example, the substitution method and the complete case (CC) analysis. More recently, maximum likelihood estimation (MLE) has been increasingly used. While the CC analysis and the substitution method usually lead to biased estimates, the MLE approach appears to perform well in many situations. This article proposes an MLE approach to estimate the association between two measurements in the presence of censoring in one or both quantities. The central idea is to use a copula function to join the marginal distributions of the two measurements. In various simulation studies, we show that our approach outperforms existing conventional methods (CC and substitution analyses). In addition, rank‐based measures of global association such as Kendall's tau or Spearman's rho can be studied, hence, attention is not only confined to Pearson's product‐moment correlation coefficient capturing solely linear association. We have shown in our simulations that our approach is robust to misspecification of the copula function or marginal distributions given a small association. Furthermore, we propose a straightforward MLE method to fit a (multiple) linear regression model in the presence of censoring in a covariate or both the covariate and the response. Given the marginal distribution of the censored covariate, our method outperforms conventional approaches. We also compare and discuss the performance of our method with multiple imputation and missing indicator model approaches.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33942345</pmid><doi>10.1002/sim.8995</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1881-0637</orcidid><orcidid>https://orcid.org/0000-0002-2880-441X</orcidid><orcidid>https://orcid.org/0000-0001-7353-9304</orcidid><orcidid>https://orcid.org/0000-0002-1803-9072</orcidid><orcidid>https://orcid.org/0000-0003-2336-8302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2021-07, Vol.40 (16), p.3740-3761
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251995
source Wiley Online Library Journals Frontfile Complete
subjects antibody titers
association
geometric mean concentration
left‐censored data
maximum likelihood inference
title Measuring association among censored antibody titer data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20association%20among%20censored%20antibody%20titer%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Tran,%20Thao%20M.%20P.&rft.date=2021-07-20&rft.volume=40&rft.issue=16&rft.spage=3740&rft.epage=3761&rft.pages=3740-3761&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8995&rft_dat=%3Cproquest_pubme%3E2540432723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540432723&rft_id=info:pmid/33942345&rfr_iscdi=true