A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019
While weather stations generally capture near‐surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a re...
Gespeichert in:
Veröffentlicht in: | International journal of climatology 2021-06, Vol.41 (8), p.4095-4111 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4111 |
---|---|
container_issue | 8 |
container_start_page | 4095 |
container_title | International journal of climatology |
container_volume | 41 |
creator | Gutiérrez‐Avila, Iván Arfer, Kodi B. Wong, Sandy Rush, Johnathan Kloog, Itai Just, Allan C. |
description | While weather stations generally capture near‐surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta‐related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite‐based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA's MODIS instruments on the Aqua and Terra satellites on a 1 × 1 km grid. We generated a satellite‐hybrid mixed‐effects model for each year, regressing Ta measurements against land use terms, day‐specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10‐fold cross‐validation at withheld stations. Across all years, the root‐mean‐square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ≥65 years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high‐quality Ta estimates for epidemiology studies in the MCM region.
Spatial pattern of the 95th percentiles of minimum (a) and maximum (b) temperature across days for each 1 km2 grid cell in the Megalopolis of Central Mexico for 2018. Temporal imputation of LST, consideration of missing data as a predictor and careful cross‐validation with detailed characterization of predictive accuracy. Application estimates population exposures to extreme temperatures for use in epidemiologic studies. |
doi_str_mv | 10.1002/joc.7060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540642412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-bd5a7b420a2b170e08f3885788654309cc25b59a414a298af3faaf74106e4eb43</originalsourceid><addsrcrecordid>eNp1kc1q3DAURkVoSaZJIU8QBN104_RKlm1pEwhDf0nIplmLa4080WBbjiS3nTfoY1fupKFddHVBOvfoQx8h5wwuGQB_t_PmsoEajsiKgWoKAClfkBVIpQopmDwhr2LcAYBSrD4mJ6XgQvKmXpGf1zROmJxPdph8wJ4Ga_wYU5hNPh2p7-gGXb-nOLTOjokuoA2Y5mDpHN24pRGT7XuXbCYTUjfS9GDprd1i7yffu7hI1nl30d_aH8542gU_UA5Q0uTzZOqMvOywj_b10zwl9x_ef11_Km7uPn5eX98URpQSinZTYdMKDshb1oAF2ZVSVo2UdSVKUMbwqq0UCiaQK4ld2SF2jWBQW2FbUZ6Sq4N3mtvBbswhlp6CGzDstUen_70Z3YPe-m9a8oopybPgzZMg-MfZxqR3fg5jzqx5JaDOX8sW6u2BMsHHGGz3_AIDvXSWt4xeOsvoxd-JnsE_JWWgOADfXW_3_xXpL3fr38JfVO2hdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540642412</pqid></control><display><type>article</type><title>A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gutiérrez‐Avila, Iván ; Arfer, Kodi B. ; Wong, Sandy ; Rush, Johnathan ; Kloog, Itai ; Just, Allan C.</creator><creatorcontrib>Gutiérrez‐Avila, Iván ; Arfer, Kodi B. ; Wong, Sandy ; Rush, Johnathan ; Kloog, Itai ; Just, Allan C.</creatorcontrib><description>While weather stations generally capture near‐surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta‐related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite‐based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA's MODIS instruments on the Aqua and Terra satellites on a 1 × 1 km grid. We generated a satellite‐hybrid mixed‐effects model for each year, regressing Ta measurements against land use terms, day‐specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10‐fold cross‐validation at withheld stations. Across all years, the root‐mean‐square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ≥65 years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high‐quality Ta estimates for epidemiology studies in the MCM region.
Spatial pattern of the 95th percentiles of minimum (a) and maximum (b) temperature across days for each 1 km2 grid cell in the Megalopolis of Central Mexico for 2018. Temporal imputation of LST, consideration of missing data as a predictor and careful cross‐validation with detailed characterization of predictive accuracy. Application estimates population exposures to extreme temperatures for use in epidemiologic studies.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.7060</identifier><identifier>PMID: 34248276</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Air temperature ; Ambient temperature ; Daily ; Daily temperatures ; Data ; Epidemiology ; extreme air temperature ; human exposure ; Instruments ; Land surface temperature ; Land use ; Megalopolis of Central Mexico ; Megalopolises ; Metropolitan areas ; MODIS ; Population density ; Regression models ; remote sensing ; Resolution ; Satellite data ; Satellite-borne instruments ; Satellites ; Surface temperature ; Temporal resolution ; Urban areas ; Weather ; Weather stations</subject><ispartof>International journal of climatology, 2021-06, Vol.41 (8), p.4095-4111</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.</rights><rights>2021 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-bd5a7b420a2b170e08f3885788654309cc25b59a414a298af3faaf74106e4eb43</citedby><cites>FETCH-LOGICAL-c4380-bd5a7b420a2b170e08f3885788654309cc25b59a414a298af3faaf74106e4eb43</cites><orcidid>0000-0001-8040-2007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.7060$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.7060$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34248276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutiérrez‐Avila, Iván</creatorcontrib><creatorcontrib>Arfer, Kodi B.</creatorcontrib><creatorcontrib>Wong, Sandy</creatorcontrib><creatorcontrib>Rush, Johnathan</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Just, Allan C.</creatorcontrib><title>A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019</title><title>International journal of climatology</title><addtitle>Int J Climatol</addtitle><description>While weather stations generally capture near‐surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta‐related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite‐based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA's MODIS instruments on the Aqua and Terra satellites on a 1 × 1 km grid. We generated a satellite‐hybrid mixed‐effects model for each year, regressing Ta measurements against land use terms, day‐specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10‐fold cross‐validation at withheld stations. Across all years, the root‐mean‐square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ≥65 years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high‐quality Ta estimates for epidemiology studies in the MCM region.
Spatial pattern of the 95th percentiles of minimum (a) and maximum (b) temperature across days for each 1 km2 grid cell in the Megalopolis of Central Mexico for 2018. Temporal imputation of LST, consideration of missing data as a predictor and careful cross‐validation with detailed characterization of predictive accuracy. Application estimates population exposures to extreme temperatures for use in epidemiologic studies.</description><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Daily</subject><subject>Daily temperatures</subject><subject>Data</subject><subject>Epidemiology</subject><subject>extreme air temperature</subject><subject>human exposure</subject><subject>Instruments</subject><subject>Land surface temperature</subject><subject>Land use</subject><subject>Megalopolis of Central Mexico</subject><subject>Megalopolises</subject><subject>Metropolitan areas</subject><subject>MODIS</subject><subject>Population density</subject><subject>Regression models</subject><subject>remote sensing</subject><subject>Resolution</subject><subject>Satellite data</subject><subject>Satellite-borne instruments</subject><subject>Satellites</subject><subject>Surface temperature</subject><subject>Temporal resolution</subject><subject>Urban areas</subject><subject>Weather</subject><subject>Weather stations</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc1q3DAURkVoSaZJIU8QBN104_RKlm1pEwhDf0nIplmLa4080WBbjiS3nTfoY1fupKFddHVBOvfoQx8h5wwuGQB_t_PmsoEajsiKgWoKAClfkBVIpQopmDwhr2LcAYBSrD4mJ6XgQvKmXpGf1zROmJxPdph8wJ4Ga_wYU5hNPh2p7-gGXb-nOLTOjokuoA2Y5mDpHN24pRGT7XuXbCYTUjfS9GDprd1i7yffu7hI1nl30d_aH8542gU_UA5Q0uTzZOqMvOywj_b10zwl9x_ef11_Km7uPn5eX98URpQSinZTYdMKDshb1oAF2ZVSVo2UdSVKUMbwqq0UCiaQK4ld2SF2jWBQW2FbUZ6Sq4N3mtvBbswhlp6CGzDstUen_70Z3YPe-m9a8oopybPgzZMg-MfZxqR3fg5jzqx5JaDOX8sW6u2BMsHHGGz3_AIDvXSWt4xeOsvoxd-JnsE_JWWgOADfXW_3_xXpL3fr38JfVO2hdA</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Gutiérrez‐Avila, Iván</creator><creator>Arfer, Kodi B.</creator><creator>Wong, Sandy</creator><creator>Rush, Johnathan</creator><creator>Kloog, Itai</creator><creator>Just, Allan C.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8040-2007</orcidid></search><sort><creationdate>20210630</creationdate><title>A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019</title><author>Gutiérrez‐Avila, Iván ; Arfer, Kodi B. ; Wong, Sandy ; Rush, Johnathan ; Kloog, Itai ; Just, Allan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-bd5a7b420a2b170e08f3885788654309cc25b59a414a298af3faaf74106e4eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Daily</topic><topic>Daily temperatures</topic><topic>Data</topic><topic>Epidemiology</topic><topic>extreme air temperature</topic><topic>human exposure</topic><topic>Instruments</topic><topic>Land surface temperature</topic><topic>Land use</topic><topic>Megalopolis of Central Mexico</topic><topic>Megalopolises</topic><topic>Metropolitan areas</topic><topic>MODIS</topic><topic>Population density</topic><topic>Regression models</topic><topic>remote sensing</topic><topic>Resolution</topic><topic>Satellite data</topic><topic>Satellite-borne instruments</topic><topic>Satellites</topic><topic>Surface temperature</topic><topic>Temporal resolution</topic><topic>Urban areas</topic><topic>Weather</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez‐Avila, Iván</creatorcontrib><creatorcontrib>Arfer, Kodi B.</creatorcontrib><creatorcontrib>Wong, Sandy</creatorcontrib><creatorcontrib>Rush, Johnathan</creatorcontrib><creatorcontrib>Kloog, Itai</creatorcontrib><creatorcontrib>Just, Allan C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez‐Avila, Iván</au><au>Arfer, Kodi B.</au><au>Wong, Sandy</au><au>Rush, Johnathan</au><au>Kloog, Itai</au><au>Just, Allan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019</atitle><jtitle>International journal of climatology</jtitle><addtitle>Int J Climatol</addtitle><date>2021-06-30</date><risdate>2021</risdate><volume>41</volume><issue>8</issue><spage>4095</spage><epage>4111</epage><pages>4095-4111</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>While weather stations generally capture near‐surface ambient air temperature (Ta) at a high temporal resolution to calculate daily values (i.e., daily minimum, mean, and maximum Ta), their fixed locations can limit their spatial coverage and resolution even in densely populated urban areas. As a result, data from weather stations alone may be inadequate for Ta‐related epidemiology particularly when the stations are not located in the areas of interest for human exposure assessment. To address this limitation in the Megalopolis of Central Mexico (MCM), we developed the first spatiotemporally resolved hybrid satellite‐based land use regression Ta model for the region, home to nearly 30 million people and includes Mexico City and seven more metropolitan areas. Our model predicted daily minimum, mean, and maximum Ta for the years 2003–2019. We used data from 120 weather stations and Land Surface Temperature (LST) data from NASA's MODIS instruments on the Aqua and Terra satellites on a 1 × 1 km grid. We generated a satellite‐hybrid mixed‐effects model for each year, regressing Ta measurements against land use terms, day‐specific random intercepts, and fixed and random LST slopes. We assessed model performance using 10‐fold cross‐validation at withheld stations. Across all years, the root‐mean‐square error ranged from 0.92 to 1.92 K and the R2 ranged from .78 to .95. To demonstrate the utility of our model for health research, we evaluated the total number of days in the year 2010 when residents ≥65 years old were exposed to Ta extremes (above 30°C or below 5°C). Our model provides much needed high‐quality Ta estimates for epidemiology studies in the MCM region.
Spatial pattern of the 95th percentiles of minimum (a) and maximum (b) temperature across days for each 1 km2 grid cell in the Megalopolis of Central Mexico for 2018. Temporal imputation of LST, consideration of missing data as a predictor and careful cross‐validation with detailed characterization of predictive accuracy. Application estimates population exposures to extreme temperatures for use in epidemiologic studies.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>34248276</pmid><doi>10.1002/joc.7060</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8040-2007</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2021-06, Vol.41 (8), p.4095-4111 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251982 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Air temperature Ambient temperature Daily Daily temperatures Data Epidemiology extreme air temperature human exposure Instruments Land surface temperature Land use Megalopolis of Central Mexico Megalopolises Metropolitan areas MODIS Population density Regression models remote sensing Resolution Satellite data Satellite-borne instruments Satellites Surface temperature Temporal resolution Urban areas Weather Weather stations |
title | A spatiotemporal reconstruction of daily ambient temperature using satellite data in the Megalopolis of Central Mexico from 2003 to 2019 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatiotemporal%20reconstruction%20of%20daily%20ambient%20temperature%20using%20satellite%20data%20in%20the%20Megalopolis%20of%20Central%20Mexico%20from%202003%20to%202019&rft.jtitle=International%20journal%20of%20climatology&rft.au=Guti%C3%A9rrez%E2%80%90Avila,%20Iv%C3%A1n&rft.date=2021-06-30&rft.volume=41&rft.issue=8&rft.spage=4095&rft.epage=4111&rft.pages=4095-4111&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.7060&rft_dat=%3Cproquest_pubme%3E2540642412%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540642412&rft_id=info:pmid/34248276&rfr_iscdi=true |