Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation
Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-05, Vol.60 (19), p.10919-10927 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10927 |
---|---|
container_issue | 19 |
container_start_page | 10919 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Biggs, George S. Klein, Oskar James Maslen, Sarah L. Skehel, J. Mark Rutherford, Trevor J. Freund, Stefan M. V. Hollfelder, Florian Boss, Sally R. Barker, Paul D. |
description | Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII(η6‐arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non‐biological ligand. Tandem mass spectrometry and 19F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein‐derived ligands. By introduction of ruthenium cofactors into a 4‐helical bundle, transfer hydrogenation catalysts were generated that displayed a 35‐fold rate increase when compared to the respective small molecule reaction in solution.
A ruthenium organometallic complex is transformed into an effective transfer hydrogenation catalyst upon exchanging ligands with a naïve protein. The direct coordination of protein sidechains to the metal is an underutilised feature in artificial metalloenzymes. |
doi_str_mv | 10.1002/anie.202015834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518068147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-3056125240b24a9bb9995a096c1664ddddbd771d86ebf8c3c19c5d93abc0c29c3</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIREthyxJZYsMmwZe5eYMUotBWCi2CsrbOeM4krjx2a8-0hJdiwSPwYjhNCZcN3vhyPn_ysf4se87olFHKX4MzOOWUU1bUIn-QHbKCs4moKvEwrXMhJlVdsIPsSYyXia9rWj7ODoQoWckrdph9n3s3BG8ttmRpVuBasvii1-BWSN7icIvoyMdxWKMzY0_OQyJ8jwNYazSZ-w704AP5EFCPIfoQydYA5Ax-fLvBdO4HNI580tB13rbkGB0GGDCSWRhMZ7QBS97f-Ty6r5s-VeaQtpto3IpcBHCxw0BONm3wK3QwGO-eZo86sBGf3c9H2ed3i4v5yWR5fnw6ny0nuqBFPhG0KBkveE4bnoNsGillAVSWmpVl3qbRtFXF2rrEpqu10EzqopUCGk01l1ocZW923qux6bHVmH4KrLoKpoewUR6M-rvizFqt_I2qecFqWiXBq3tB8NcjxkH1Jmq0Fhz6MSqeS84lpZVM6Mt_0Es_BpfaU3eysmb5VjjdUTr4GAN2-8cwqrZ5UNs8qH0e0oUXf7awx38FIAFyB9wai5v_6NTs7HTxW_4TgRzIDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518068147</pqid></control><display><type>article</type><title>Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Biggs, George S. ; Klein, Oskar James ; Maslen, Sarah L. ; Skehel, J. Mark ; Rutherford, Trevor J. ; Freund, Stefan M. V. ; Hollfelder, Florian ; Boss, Sally R. ; Barker, Paul D.</creator><creatorcontrib>Biggs, George S. ; Klein, Oskar James ; Maslen, Sarah L. ; Skehel, J. Mark ; Rutherford, Trevor J. ; Freund, Stefan M. V. ; Hollfelder, Florian ; Boss, Sally R. ; Barker, Paul D.</creatorcontrib><description>Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII(η6‐arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non‐biological ligand. Tandem mass spectrometry and 19F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein‐derived ligands. By introduction of ruthenium cofactors into a 4‐helical bundle, transfer hydrogenation catalysts were generated that displayed a 35‐fold rate increase when compared to the respective small molecule reaction in solution.
A ruthenium organometallic complex is transformed into an effective transfer hydrogenation catalyst upon exchanging ligands with a naïve protein. The direct coordination of protein sidechains to the metal is an underutilised feature in artificial metalloenzymes.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202015834</identifier><identifier>PMID: 33616271</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; Cofactors ; Coordination compounds ; direct coordination ; Exchanging ; Fluorine ; Hydrogenation ; ligand exchange ; Ligands ; Magnetic Resonance Spectroscopy ; Mass spectrometry ; Mass spectroscopy ; metalloenzymes ; Metalloproteins - chemistry ; Metalloproteins - metabolism ; Molecular Structure ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Organometallic Compounds - chemistry ; Organometallic Compounds - metabolism ; Proteins ; Ruthenium ; Ruthenium - chemistry ; Ruthenium - metabolism ; transfer hydrogenation</subject><ispartof>Angewandte Chemie International Edition, 2021-05, Vol.60 (19), p.10919-10927</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-3056125240b24a9bb9995a096c1664ddddbd771d86ebf8c3c19c5d93abc0c29c3</citedby><cites>FETCH-LOGICAL-c5054-3056125240b24a9bb9995a096c1664ddddbd771d86ebf8c3c19c5d93abc0c29c3</cites><orcidid>0000-0001-6526-9236 ; 0000-0002-1367-6312 ; 0000-0002-2432-0901 ; 0000-0003-0094-0054 ; 0000-0003-2213-8003 ; 0000-0002-6194-1889 ; 0000-0002-0261-2866 ; 0000-0002-7031-9872 ; 0000-0001-7294-1668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202015834$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202015834$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33616271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biggs, George S.</creatorcontrib><creatorcontrib>Klein, Oskar James</creatorcontrib><creatorcontrib>Maslen, Sarah L.</creatorcontrib><creatorcontrib>Skehel, J. Mark</creatorcontrib><creatorcontrib>Rutherford, Trevor J.</creatorcontrib><creatorcontrib>Freund, Stefan M. V.</creatorcontrib><creatorcontrib>Hollfelder, Florian</creatorcontrib><creatorcontrib>Boss, Sally R.</creatorcontrib><creatorcontrib>Barker, Paul D.</creatorcontrib><title>Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII(η6‐arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non‐biological ligand. Tandem mass spectrometry and 19F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein‐derived ligands. By introduction of ruthenium cofactors into a 4‐helical bundle, transfer hydrogenation catalysts were generated that displayed a 35‐fold rate increase when compared to the respective small molecule reaction in solution.
A ruthenium organometallic complex is transformed into an effective transfer hydrogenation catalyst upon exchanging ligands with a naïve protein. The direct coordination of protein sidechains to the metal is an underutilised feature in artificial metalloenzymes.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cofactors</subject><subject>Coordination compounds</subject><subject>direct coordination</subject><subject>Exchanging</subject><subject>Fluorine</subject><subject>Hydrogenation</subject><subject>ligand exchange</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>metalloenzymes</subject><subject>Metalloproteins - chemistry</subject><subject>Metalloproteins - metabolism</subject><subject>Molecular Structure</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Organometallic Compounds - chemistry</subject><subject>Organometallic Compounds - metabolism</subject><subject>Proteins</subject><subject>Ruthenium</subject><subject>Ruthenium - chemistry</subject><subject>Ruthenium - metabolism</subject><subject>transfer hydrogenation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkstuEzEUhkcIREthyxJZYsMmwZe5eYMUotBWCi2CsrbOeM4krjx2a8-0hJdiwSPwYjhNCZcN3vhyPn_ysf4se87olFHKX4MzOOWUU1bUIn-QHbKCs4moKvEwrXMhJlVdsIPsSYyXia9rWj7ODoQoWckrdph9n3s3BG8ttmRpVuBasvii1-BWSN7icIvoyMdxWKMzY0_OQyJ8jwNYazSZ-w704AP5EFCPIfoQydYA5Ax-fLvBdO4HNI580tB13rbkGB0GGDCSWRhMZ7QBS97f-Ty6r5s-VeaQtpto3IpcBHCxw0BONm3wK3QwGO-eZo86sBGf3c9H2ed3i4v5yWR5fnw6ny0nuqBFPhG0KBkveE4bnoNsGillAVSWmpVl3qbRtFXF2rrEpqu10EzqopUCGk01l1ocZW923qux6bHVmH4KrLoKpoewUR6M-rvizFqt_I2qecFqWiXBq3tB8NcjxkH1Jmq0Fhz6MSqeS84lpZVM6Mt_0Es_BpfaU3eysmb5VjjdUTr4GAN2-8cwqrZ5UNs8qH0e0oUXf7awx38FIAFyB9wai5v_6NTs7HTxW_4TgRzIDw</recordid><startdate>20210503</startdate><enddate>20210503</enddate><creator>Biggs, George S.</creator><creator>Klein, Oskar James</creator><creator>Maslen, Sarah L.</creator><creator>Skehel, J. Mark</creator><creator>Rutherford, Trevor J.</creator><creator>Freund, Stefan M. V.</creator><creator>Hollfelder, Florian</creator><creator>Boss, Sally R.</creator><creator>Barker, Paul D.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6526-9236</orcidid><orcidid>https://orcid.org/0000-0002-1367-6312</orcidid><orcidid>https://orcid.org/0000-0002-2432-0901</orcidid><orcidid>https://orcid.org/0000-0003-0094-0054</orcidid><orcidid>https://orcid.org/0000-0003-2213-8003</orcidid><orcidid>https://orcid.org/0000-0002-6194-1889</orcidid><orcidid>https://orcid.org/0000-0002-0261-2866</orcidid><orcidid>https://orcid.org/0000-0002-7031-9872</orcidid><orcidid>https://orcid.org/0000-0001-7294-1668</orcidid></search><sort><creationdate>20210503</creationdate><title>Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation</title><author>Biggs, George S. ; Klein, Oskar James ; Maslen, Sarah L. ; Skehel, J. Mark ; Rutherford, Trevor J. ; Freund, Stefan M. V. ; Hollfelder, Florian ; Boss, Sally R. ; Barker, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-3056125240b24a9bb9995a096c1664ddddbd771d86ebf8c3c19c5d93abc0c29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cofactors</topic><topic>Coordination compounds</topic><topic>direct coordination</topic><topic>Exchanging</topic><topic>Fluorine</topic><topic>Hydrogenation</topic><topic>ligand exchange</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>metalloenzymes</topic><topic>Metalloproteins - chemistry</topic><topic>Metalloproteins - metabolism</topic><topic>Molecular Structure</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Organometallic Compounds - chemistry</topic><topic>Organometallic Compounds - metabolism</topic><topic>Proteins</topic><topic>Ruthenium</topic><topic>Ruthenium - chemistry</topic><topic>Ruthenium - metabolism</topic><topic>transfer hydrogenation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biggs, George S.</creatorcontrib><creatorcontrib>Klein, Oskar James</creatorcontrib><creatorcontrib>Maslen, Sarah L.</creatorcontrib><creatorcontrib>Skehel, J. Mark</creatorcontrib><creatorcontrib>Rutherford, Trevor J.</creatorcontrib><creatorcontrib>Freund, Stefan M. V.</creatorcontrib><creatorcontrib>Hollfelder, Florian</creatorcontrib><creatorcontrib>Boss, Sally R.</creatorcontrib><creatorcontrib>Barker, Paul D.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biggs, George S.</au><au>Klein, Oskar James</au><au>Maslen, Sarah L.</au><au>Skehel, J. Mark</au><au>Rutherford, Trevor J.</au><au>Freund, Stefan M. V.</au><au>Hollfelder, Florian</au><au>Boss, Sally R.</au><au>Barker, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-05-03</date><risdate>2021</risdate><volume>60</volume><issue>19</issue><spage>10919</spage><epage>10927</epage><pages>10919-10927</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII(η6‐arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non‐biological ligand. Tandem mass spectrometry and 19F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein‐derived ligands. By introduction of ruthenium cofactors into a 4‐helical bundle, transfer hydrogenation catalysts were generated that displayed a 35‐fold rate increase when compared to the respective small molecule reaction in solution.
A ruthenium organometallic complex is transformed into an effective transfer hydrogenation catalyst upon exchanging ligands with a naïve protein. The direct coordination of protein sidechains to the metal is an underutilised feature in artificial metalloenzymes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33616271</pmid><doi>10.1002/anie.202015834</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-6526-9236</orcidid><orcidid>https://orcid.org/0000-0002-1367-6312</orcidid><orcidid>https://orcid.org/0000-0002-2432-0901</orcidid><orcidid>https://orcid.org/0000-0003-0094-0054</orcidid><orcidid>https://orcid.org/0000-0003-2213-8003</orcidid><orcidid>https://orcid.org/0000-0002-6194-1889</orcidid><orcidid>https://orcid.org/0000-0002-0261-2866</orcidid><orcidid>https://orcid.org/0000-0002-7031-9872</orcidid><orcidid>https://orcid.org/0000-0001-7294-1668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-05, Vol.60 (19), p.10919-10927 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8251807 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Catalysts Catalytic activity Cofactors Coordination compounds direct coordination Exchanging Fluorine Hydrogenation ligand exchange Ligands Magnetic Resonance Spectroscopy Mass spectrometry Mass spectroscopy metalloenzymes Metalloproteins - chemistry Metalloproteins - metabolism Molecular Structure NMR NMR spectroscopy Nuclear magnetic resonance Organometallic Compounds - chemistry Organometallic Compounds - metabolism Proteins Ruthenium Ruthenium - chemistry Ruthenium - metabolism transfer hydrogenation |
title | Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Ligand%20Exchange%20Between%20Ruthenium%20Organometallic%20Cofactor%20Precursors%20and%20a%20Na%C3%AFve%20Protein%20Scaffold%20Generates%20Artificial%20Metalloenzymes%20Catalysing%20Transfer%20Hydrogenation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Biggs,%20George%20S.&rft.date=2021-05-03&rft.volume=60&rft.issue=19&rft.spage=10919&rft.epage=10927&rft.pages=10919-10927&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202015834&rft_dat=%3Cproquest_pubme%3E2518068147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518068147&rft_id=info:pmid/33616271&rfr_iscdi=true |