3D Printing in alloy design to improve biocompatibility in metallic implants
[Display omitted] 3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-sp...
Gespeichert in:
Veröffentlicht in: | Materials today (Kidlington, England) England), 2021-05, Vol.45, p.20-34 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | |
container_start_page | 20 |
container_title | Materials today (Kidlington, England) |
container_volume | 45 |
creator | Mitra, Indranath Bose, Susmita Dernell, William S. Dasgupta, Nairanjana Eckstrand, Chrissy Herrick, Jim Yaszemski, Michael J. Goodman, Stuart B. Bandyopadhyay, Amit |
description | [Display omitted]
3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-specific compositional modifications. In medical applications, the biological response from a host tissue depends on a biomaterial's structural and compositional properties in the physiological environment. Application of 3DP can pave the way towards manufacturing innovative metallic implants, combining structural variations at different length scales and tailored compositions designed for specific biological responses. This study shows how 3DP can be used to design metallic alloys for orthopedic and dental applications with improved biocompatibility using in vitro and in vivo studies. Titanium (Ti) and its alloys are used extensively in biomedical devices due to excellent fatigue and corrosion resistance and good strength to weight ratio. However, Ti alloys' in vivo biological response is poor due to its bioinert surface. Different coatings and surface modification techniques are currently being used to improve the biocompatibility of Ti implants. We focused our efforts on improving Ti's biocompatibility via a combination of tantalum (Ta) chemistry in Ti, the addition of designed micro-porosity, and nanoscale surface modification to enhance both in vitro cytocompatibility and early stage in vivo osseointegration, which was studied in rat and rabbit distal femur models. |
doi_str_mv | 10.1016/j.mattod.2020.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8248902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136970212030448X</els_id><sourcerecordid>2548632311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-65db141459daf130ec7fe628799d55300701a767b9b57101eb70c0112e18b6ee3</originalsourceid><addsrcrecordid>eNp9UUFu2zAQJIoUteP0B0GgYy5yuKQkSpcCQZKmBQy0h-ZMUNTaXUMSXZI24N-Hhl23ueREYjkzy5lh7Br4HDhUd-v5YGJ03VxwkUYw5wI-sCnUSuYFcHmR7rJqcpXmE3YZwppzUADlJzaRhUisup6yhXzMfnoaI42rjMbM9L3bZx0GWo1ZdBkNG-92mLXkrBs2JlJLPcX9ATtgTHCyB1Bvxhiu2Mel6QN-Pp0z9vL16dfDt3zx4_n7w_0it6VoYl6VXQsFFGXTmSVIjlYtsRK1apquLCXnioNRlWqbtlTJK7aKWw4gEOq2QpQz9uWou9m2A3YWx-hNrzeeBuP32hnSb19G-q1XbqdrUdQNF0ng9iTg3Z8thqgHChb75ALdNmhRFnUlhQRI0OIItd6F4HF5XgNcH4rQa30sQh-K0AA6BZ5oN_9_8Uz6m_w_D5iC2hF6HSzhaLEjjzbqztH7G14B0PicOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548632311</pqid></control><display><type>article</type><title>3D Printing in alloy design to improve biocompatibility in metallic implants</title><source>SD College Edition Journals Collection - Physical Sciences [SCPS]</source><source>Elsevier ScienceDirect Journals</source><creator>Mitra, Indranath ; Bose, Susmita ; Dernell, William S. ; Dasgupta, Nairanjana ; Eckstrand, Chrissy ; Herrick, Jim ; Yaszemski, Michael J. ; Goodman, Stuart B. ; Bandyopadhyay, Amit</creator><creatorcontrib>Mitra, Indranath ; Bose, Susmita ; Dernell, William S. ; Dasgupta, Nairanjana ; Eckstrand, Chrissy ; Herrick, Jim ; Yaszemski, Michael J. ; Goodman, Stuart B. ; Bandyopadhyay, Amit</creatorcontrib><description>[Display omitted]
3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-specific compositional modifications. In medical applications, the biological response from a host tissue depends on a biomaterial's structural and compositional properties in the physiological environment. Application of 3DP can pave the way towards manufacturing innovative metallic implants, combining structural variations at different length scales and tailored compositions designed for specific biological responses. This study shows how 3DP can be used to design metallic alloys for orthopedic and dental applications with improved biocompatibility using in vitro and in vivo studies. Titanium (Ti) and its alloys are used extensively in biomedical devices due to excellent fatigue and corrosion resistance and good strength to weight ratio. However, Ti alloys' in vivo biological response is poor due to its bioinert surface. Different coatings and surface modification techniques are currently being used to improve the biocompatibility of Ti implants. We focused our efforts on improving Ti's biocompatibility via a combination of tantalum (Ta) chemistry in Ti, the addition of designed micro-porosity, and nanoscale surface modification to enhance both in vitro cytocompatibility and early stage in vivo osseointegration, which was studied in rat and rabbit distal femur models.</description><identifier>ISSN: 1369-7021</identifier><identifier>EISSN: 1873-4103</identifier><identifier>DOI: 10.1016/j.mattod.2020.11.021</identifier><identifier>PMID: 34220288</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><ispartof>Materials today (Kidlington, England), 2021-05, Vol.45, p.20-34</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-65db141459daf130ec7fe628799d55300701a767b9b57101eb70c0112e18b6ee3</citedby><cites>FETCH-LOGICAL-c529t-65db141459daf130ec7fe628799d55300701a767b9b57101eb70c0112e18b6ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S136970212030448X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,3608,27901,27902,45986,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34220288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitra, Indranath</creatorcontrib><creatorcontrib>Bose, Susmita</creatorcontrib><creatorcontrib>Dernell, William S.</creatorcontrib><creatorcontrib>Dasgupta, Nairanjana</creatorcontrib><creatorcontrib>Eckstrand, Chrissy</creatorcontrib><creatorcontrib>Herrick, Jim</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Bandyopadhyay, Amit</creatorcontrib><title>3D Printing in alloy design to improve biocompatibility in metallic implants</title><title>Materials today (Kidlington, England)</title><addtitle>Mater Today (Kidlington)</addtitle><description>[Display omitted]
3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-specific compositional modifications. In medical applications, the biological response from a host tissue depends on a biomaterial's structural and compositional properties in the physiological environment. Application of 3DP can pave the way towards manufacturing innovative metallic implants, combining structural variations at different length scales and tailored compositions designed for specific biological responses. This study shows how 3DP can be used to design metallic alloys for orthopedic and dental applications with improved biocompatibility using in vitro and in vivo studies. Titanium (Ti) and its alloys are used extensively in biomedical devices due to excellent fatigue and corrosion resistance and good strength to weight ratio. However, Ti alloys' in vivo biological response is poor due to its bioinert surface. Different coatings and surface modification techniques are currently being used to improve the biocompatibility of Ti implants. We focused our efforts on improving Ti's biocompatibility via a combination of tantalum (Ta) chemistry in Ti, the addition of designed micro-porosity, and nanoscale surface modification to enhance both in vitro cytocompatibility and early stage in vivo osseointegration, which was studied in rat and rabbit distal femur models.</description><issn>1369-7021</issn><issn>1873-4103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UUFu2zAQJIoUteP0B0GgYy5yuKQkSpcCQZKmBQy0h-ZMUNTaXUMSXZI24N-Hhl23ueREYjkzy5lh7Br4HDhUd-v5YGJ03VxwkUYw5wI-sCnUSuYFcHmR7rJqcpXmE3YZwppzUADlJzaRhUisup6yhXzMfnoaI42rjMbM9L3bZx0GWo1ZdBkNG-92mLXkrBs2JlJLPcX9ATtgTHCyB1Bvxhiu2Mel6QN-Pp0z9vL16dfDt3zx4_n7w_0it6VoYl6VXQsFFGXTmSVIjlYtsRK1apquLCXnioNRlWqbtlTJK7aKWw4gEOq2QpQz9uWou9m2A3YWx-hNrzeeBuP32hnSb19G-q1XbqdrUdQNF0ng9iTg3Z8thqgHChb75ALdNmhRFnUlhQRI0OIItd6F4HF5XgNcH4rQa30sQh-K0AA6BZ5oN_9_8Uz6m_w_D5iC2hF6HSzhaLEjjzbqztH7G14B0PicOA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mitra, Indranath</creator><creator>Bose, Susmita</creator><creator>Dernell, William S.</creator><creator>Dasgupta, Nairanjana</creator><creator>Eckstrand, Chrissy</creator><creator>Herrick, Jim</creator><creator>Yaszemski, Michael J.</creator><creator>Goodman, Stuart B.</creator><creator>Bandyopadhyay, Amit</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210501</creationdate><title>3D Printing in alloy design to improve biocompatibility in metallic implants</title><author>Mitra, Indranath ; Bose, Susmita ; Dernell, William S. ; Dasgupta, Nairanjana ; Eckstrand, Chrissy ; Herrick, Jim ; Yaszemski, Michael J. ; Goodman, Stuart B. ; Bandyopadhyay, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-65db141459daf130ec7fe628799d55300701a767b9b57101eb70c0112e18b6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Indranath</creatorcontrib><creatorcontrib>Bose, Susmita</creatorcontrib><creatorcontrib>Dernell, William S.</creatorcontrib><creatorcontrib>Dasgupta, Nairanjana</creatorcontrib><creatorcontrib>Eckstrand, Chrissy</creatorcontrib><creatorcontrib>Herrick, Jim</creatorcontrib><creatorcontrib>Yaszemski, Michael J.</creatorcontrib><creatorcontrib>Goodman, Stuart B.</creatorcontrib><creatorcontrib>Bandyopadhyay, Amit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials today (Kidlington, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Indranath</au><au>Bose, Susmita</au><au>Dernell, William S.</au><au>Dasgupta, Nairanjana</au><au>Eckstrand, Chrissy</au><au>Herrick, Jim</au><au>Yaszemski, Michael J.</au><au>Goodman, Stuart B.</au><au>Bandyopadhyay, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing in alloy design to improve biocompatibility in metallic implants</atitle><jtitle>Materials today (Kidlington, England)</jtitle><addtitle>Mater Today (Kidlington)</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>45</volume><spage>20</spage><epage>34</epage><pages>20-34</pages><issn>1369-7021</issn><eissn>1873-4103</eissn><abstract>[Display omitted]
3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-specific compositional modifications. In medical applications, the biological response from a host tissue depends on a biomaterial's structural and compositional properties in the physiological environment. Application of 3DP can pave the way towards manufacturing innovative metallic implants, combining structural variations at different length scales and tailored compositions designed for specific biological responses. This study shows how 3DP can be used to design metallic alloys for orthopedic and dental applications with improved biocompatibility using in vitro and in vivo studies. Titanium (Ti) and its alloys are used extensively in biomedical devices due to excellent fatigue and corrosion resistance and good strength to weight ratio. However, Ti alloys' in vivo biological response is poor due to its bioinert surface. Different coatings and surface modification techniques are currently being used to improve the biocompatibility of Ti implants. We focused our efforts on improving Ti's biocompatibility via a combination of tantalum (Ta) chemistry in Ti, the addition of designed micro-porosity, and nanoscale surface modification to enhance both in vitro cytocompatibility and early stage in vivo osseointegration, which was studied in rat and rabbit distal femur models.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34220288</pmid><doi>10.1016/j.mattod.2020.11.021</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7021 |
ispartof | Materials today (Kidlington, England), 2021-05, Vol.45, p.20-34 |
issn | 1369-7021 1873-4103 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8248902 |
source | SD College Edition Journals Collection - Physical Sciences [SCPS]; Elsevier ScienceDirect Journals |
title | 3D Printing in alloy design to improve biocompatibility in metallic implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20in%20alloy%20design%20to%20improve%20biocompatibility%20in%20metallic%20implants&rft.jtitle=Materials%20today%20(Kidlington,%20England)&rft.au=Mitra,%20Indranath&rft.date=2021-05-01&rft.volume=45&rft.spage=20&rft.epage=34&rft.pages=20-34&rft.issn=1369-7021&rft.eissn=1873-4103&rft_id=info:doi/10.1016/j.mattod.2020.11.021&rft_dat=%3Cproquest_pubme%3E2548632311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548632311&rft_id=info:pmid/34220288&rft_els_id=S136970212030448X&rfr_iscdi=true |